Skip to main content

Yeast Two-Hybrid System for Mapping Novel Dengue Protein Interactions

  • Protocol
  • First Online:
Dengue Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2409))

  • 1470 Accesses

Abstract

Yeast two-hybrid (Y2H) systems are one of the principal choices for identifying novel binary protein-protein interactions (PPIs). Since its development, it has contributed for the discovery of several PPIs between pathogens and host, allowing not only a comprehensive look at the disease pathogenesis but also for therapeutic strategies. Identification of viral-host PPIs that impact on viral replication and pathogenesis can lead to new advances in antiviral therapies such as the development of drug candidates and vaccine design. In this chapter, we revise the Y2H key parameters necessary for screening PPIs and discuss the possible approaches for using this technique to identify novel dengue-host protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biol Direct 1:29. https://doi.org/10.1186/1745-6150-1-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beachboard DC, Horner SM (2016) Innate immune evasion strategies of DNA and RNA viruses. Curr Opin Microbiol 32:113–119. https://doi.org/10.1016/j.mib.2016.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han JD, Bertin N, Hao T et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93. https://doi.org/10.1038/nature02555

    Article  CAS  PubMed  Google Scholar 

  4. Brito AF, Pinney JW (2017) Protein-protein interactions in virus-host systems. Front Microbiol 8:1557. https://doi.org/10.3389/fmicb.2017.01557

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246. https://doi.org/10.1038/340245a0

    Article  CAS  PubMed  Google Scholar 

  6. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627. https://doi.org/10.1038/35001009

    Article  CAS  PubMed  Google Scholar 

  7. Bruckner A, Polge C, Lentze N et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788. https://doi.org/10.3390/ijms10062763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mehla J, Caufield JH, Sakhawalkar N et al (2017) A comparison of two-hybrid approaches for detecting protein-protein interactions. Methods Enzymol 586:333–358. https://doi.org/10.1016/bs.mie.2016.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu L (1997) Yeast GAL4 two-hybrid system. A genetic system to identify proteins that interact with a target protein. Methods Mol Biol 63:173–196. https://doi.org/10.1385/0-89603-481-X:173

    Article  CAS  PubMed  Google Scholar 

  10. James P (2001) Yeast two-hybrid vectors and strains. Methods Mol Biol 177:41–84. https://doi.org/10.1385/1-59259-210-4:041

    Article  CAS  PubMed  Google Scholar 

  11. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144(4):1425–1436

    Article  CAS  Google Scholar 

  12. Lievens S, Lemmens I, Tavernier J (2009) Mammalian two-hybrids come of age. Trends Biochem Sci 34(11):579–588. https://doi.org/10.1016/j.tibs.2009.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stynen B, Van Dijck P, Tournu H (2010) A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans. Nucleic Acids Res 38(19):e184. https://doi.org/10.1093/nar/gkq725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karimova G, Pidoux J, Ullmann A et al (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95(10):5752–5756. https://doi.org/10.1073/pnas.95.10.5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Osborne MA, Zenner G, Lubinus M et al (1996) The inositol 5′-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J Biol Chem 271(46):29271–29278. https://doi.org/10.1074/jbc.271.46.29271

    Article  CAS  PubMed  Google Scholar 

  16. Caufield JH, Sakhawalkar N, Uetz P (2012) A comparison and optimization of yeast two-hybrid systems. Methods 58(4):317–324. https://doi.org/10.1016/j.ymeth.2012.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen YC, Rajagopala SV, Stellberger T et al (2010) Exhaustive benchmarking of the yeast two-hybrid system. Nat Methods 7(9):667–668.; author reply 668. https://doi.org/10.1038/nmeth0910-667

    Article  CAS  PubMed  Google Scholar 

  18. Flamand M, Megret F, Mathieu M et al (1999) Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73(7):6104–6110. https://doi.org/10.1128/JVI.73.7.6104-6110.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mondotte JA, Lozach PY, Amara A et al (2007) Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81(13):7136–7148. https://doi.org/10.1128/JVI.00116-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su CI, Tseng CH, Yu CY et al (2016) SUMO modification stabilizes dengue virus nonstructural protein 5 to support virus replication. J Virol 90(9):4308–4319. https://doi.org/10.1128/JVI.00223-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Conde JN, Schutt WR, Mladinich M et al (2020) NS5 sumoylation directs nuclear responses that permit zika virus to persistently infect human brain microvascular endothelial cells. J Virol 94(19):e01086. https://doi.org/10.1128/JVI.01086-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conde JN, da Silva EM, Allonso D et al (2016) Inhibition of the membrane attack complex by dengue virus NS1 through interaction with vitronectin and terminal complement proteins. J Virol 90(21):9570–9581. https://doi.org/10.1128/JVI.00912-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silva EM, Conde JN, Allonso D et al (2013) Mapping the interactions of dengue virus NS1 protein with human liver proteins using a yeast two-hybrid system: identification of C1q as an interacting partner. PLoS One 8(3):e57514. https://doi.org/10.1371/journal.pone.0057514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silva EM, Conde JN, Allonso D et al (2019) Dengue virus nonstructural 3 protein interacts directly with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and reduces its glycolytic activity. Sci Rep 9(1):2651. https://doi.org/10.1038/s41598-019-39157-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan MJA, Brown NG, Chan KWK et al (2020) Mutations in the cytoplasmic domain of dengue virus NS4A affect virus fitness and interactions with other non-structural proteins. J Gen Virol 101(9):941–953. https://doi.org/10.1099/jgv.0.001462

    Article  CAS  PubMed  Google Scholar 

  26. Thepparit C, Khongwichit S, Ketsuwan K et al (2019) Dengue virus requires apoptosis linked gene-2-interacting protein X (ALIX) for viral propagation. Virus Res 261:65–71. https://doi.org/10.1016/j.virusres.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  27. Tham HW, Balasubramaniam VR, Chew MF et al (2015) Protein-protein interactions between A. aegypti midgut and dengue virus 2: two-hybrid screens using the midgut cDNA library. J Infect Dev Ctries 9(12):1338–1349. https://doi.org/10.3855/jidc.6422

    Article  CAS  PubMed  Google Scholar 

  28. Tham HW, Balasubramaniam VR, Tejo BA et al (2014) CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells. Viruses 6(12):5028–5046. https://doi.org/10.3390/v6125028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khunchai S, Junking M, Suttitheptumrong A et al (2012) Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production. Biochem Biophys Res Commun 423(2):398–403. https://doi.org/10.1016/j.bbrc.2012.05.137

    Article  CAS  PubMed  Google Scholar 

  30. Mairiang D, Zhang H, Sodja A et al (2013) Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 8(1):e53535. https://doi.org/10.1371/journal.pone.0053535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Breton M, Meyniel-Schicklin L, Deloire A et al (2011) Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen. BMC Microbiol 11:234. https://doi.org/10.1186/1471-2180-11-234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khadka S, Vangeloff AD, Zhang C et al (2011) A physical interaction network of dengue virus and human proteins. Mol Cell Proteom 10(12):M111.012187. https://doi.org/10.1074/mcp.M111.012187

    Article  CAS  Google Scholar 

  33. Pierson TC, Diamond MS (2020) The continued threat of emerging flaviviruses. Nat Microbiol 5(6):796–812. https://doi.org/10.1038/s41564-020-0714-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sambrook J (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  35. Snider J, Kittanakom S, Curak J et al (2010) Split-ubiquitin based membrane yeast two-hybrid (MYTH) system: a powerful tool for identifying protein-protein interactions. J Vis Exp (36):1698. https://doi.org/10.3791/1698

  36. Broder YC, Katz S, Aronheim A (1998) The ras recruitment system, a novel approach to the study of protein-protein interactions. Curr Biol 8(20):1121–1124. https://doi.org/10.1016/s0960-9822(98)70467-1

    Article  CAS  PubMed  Google Scholar 

  37. Hubsman M, Yudkovsky G, Aronheim A (2001) A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Res 29(4):E18. https://doi.org/10.1093/nar/29.4.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fromont-Racine M, Rain JC, Legrain P (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 16(3):277–282. https://doi.org/10.1038/ng0797-277

    Article  CAS  PubMed  Google Scholar 

  39. Gietz RD, Triggs-Raine B, Robbins A et al (1997) Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system. Mol Cell Biochem 172(1–2):67–79

    Article  CAS  Google Scholar 

  40. Maret W, Larsen KS, Vallee BL (1997) Coordination dynamics of biological zinc “clusters” in metallothioneins and in the DNA-binding domain of the transcription factor Gal4. Proc Natl Acad Sci U S A 94(6):2233–2237. https://doi.org/10.1073/pnas.94.6.2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Nascimento Conde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conde, J.N. (2022). Yeast Two-Hybrid System for Mapping Novel Dengue Protein Interactions. In: Mohana-Borges, R. (eds) Dengue Virus. Methods in Molecular Biology, vol 2409. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1879-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1879-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1878-3

  • Online ISBN: 978-1-0716-1879-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics