Skip to main content

In Vitro Method for Synthesis of Large-Scale dsRNA Molecule as a Novel Plant Protection Strategy

  • Protocol
  • First Online:
Plant Gene Silencing

Abstract

Double-stranded RNA (dsRNAs) molecules are the precursors and effective triggers of RNAi in most organisms. RNAi can be induced by the direct introduction of dsRNAs in plants, fungi, insects, and nematodes. Until now RNAi is usually established by transformation of the plant with a construct that produces hairpin RNAs. Alternatively, advances in RNA biology demonstrated efficiently the in vitro method of large-scale synthesis of dsRNA molecule. Here we describe the de novo synthesis of dsRNA molecule targeting the specific gene of interest for functional application. Selection of off-target effective siRNA regions, flanking of T7 promoter sequences, T7 polymerase reaction, and maintenance of the stability of dsRNA molecules are the main criteria of this method to obtain pure and effective yield for functional applications. IPTG (isopropyl-β-D-thiogalactopyranoside) induced, T7 express E. coli cells, could be used for large scale synthesis of dsRNA molecule are also described in this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Sunil KM (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eamens A, Wang MB, Neil AS, Waterhouse PM (2008) RNA silencing in plants: yesterday, today and tomorrow. Plant Physiol 147:456–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25(11):1322–1326 

    Google Scholar 

  4. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Google Scholar 

  5. Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103:14302–14306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nowara D, Schweizer P, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to fusarium species. Proc Natl Acad Sci U S A 110:19324–19329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tenllado F, Martínez-García B, Vargas M, Díaz-Ruíz JR (2003) Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tenllado F, Llave C, Díaz-Ruíz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    Article  CAS  PubMed  Google Scholar 

  10. Wang M, Jin H (2017) Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol 25:4–6

    Article  CAS  PubMed  Google Scholar 

  11. Yin G, Sun Z, Liu N, Zhang L, Song Y, Zhu C, Wen F (2009) Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Appl Microbiol Biotechnol 84:323–333

    Article  CAS  PubMed  Google Scholar 

  12. Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact 24:554–561

    Article  CAS  PubMed  Google Scholar 

  13. Dalakouras A, Jarausch W, Buchholz G, Bassler A, Braun M, Manthey T, Krczal G, Wassenegger M (2018) Delivery of hairpin rnas and small rnas into woody and herbaceous plants by trunk injection and petiole absorption. Front Plant Sci 9:1253

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koch A, Biedenkopf D, Furch A et al (2016) An RNAi-based control of fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 12:e1005901

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  PubMed  Google Scholar 

  16. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  17. Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F (2004) siRNA selection server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 32:130–134

    Article  Google Scholar 

  18. Naito Y, Yoshimura J, Morishita S, Ui-Tei K (2003) siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Biotechnology 10:392

    Google Scholar 

  19. Huang L, Judy L (2013) Production of highly potent recombinant siRNAs in Escherichia coli. Nat Protocol 8:2325–2336

    Article  CAS  Google Scholar 

  20. Aalto AP, Sarin LP, van Dijk AA, Saarma M, Poranen MM, Arumäe U, Bamford DH (2007) Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. RNA13:422–9

    Google Scholar 

  21. Makeyev EV, Bamford DH (2000) Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6. EMBO J 19:124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun Y, Qiao X, Mindich L (2004) Construction of carrier state viruses with partial genomes of the segmented dsRNA bacteriophages. Virology 319:274–279

    Article  CAS  PubMed  Google Scholar 

  23. Romanovskaya A, Paavilainen H, Nygårdas M, Bamford DH, Hukkanen V, Poranen MM (2012) Enzymatically produced pools of canonical and dicer-substrate siRNA molecules display comparable gene silencing and antiviral activities against herpes simplex virus. PLoS One 7:e51019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dellaporta S, Wood J, Hicks JB (1983) A plant DNA minipreparation: version I. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  25. Birhman RK, Singh BP (1995) Path-coefficient analyses and genetic parameters of the components of field resistance of potatoes to late blight. Ann Appl Biol 127:353–362

    Article  Google Scholar 

  26. Caten CE, Jinks JL (1968) Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Canadian J Botany 46:329–347

    Article  Google Scholar 

  27. Tani S, Yatzkan E, Judelson HS (2004) Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Molecular Plant-Microbe Interactions 17:330–337

    Google Scholar 

  28. Firoz Ahmed, Muthappa Senthil-Kumar, Xinbin Dai, Vemanna S. Ramu, Seonghee Lee, Kirankumar S. Mysore, Patrick Xuechun Zhao (2020) pssRNAit: A Web Server for Designing Effective and Specific Plant siRNAs with Genome-Wide Off-Target Assessment. Plant Physiol 184:65–81

    Google Scholar 

  29. Myers, J.W. et al. (2006) Minimizing off-target effects by using diced siRNAs for RNA interference. J RNAi Gene Silencing 2:181–194

    Google Scholar 

  30. Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J, et al. (2008) The impact of target site accessibility on the design of effective siRNAs RNAplex: a fast tool for RNA-RNA interaction search. Nat Biotechnol Bioinformatics 2624:578–5832657–583266

    Google Scholar 

  31. Makeyev EV, Bamford DH (2000) Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6. EMBO J 19:124–133

    Google Scholar 

  32. Poranen MM, Salgado PS, Koivunen MRL,Wright S, Bamford DH, Stuart DI, Grimes JM (2008) Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase. Nucleic Acids Res 36:6633–6644

    Google Scholar 

  33. Wright S, Poranen MM, Bamford DH, Stuart DI, Grimes JM (2012) Non-catalytic ions direct the RNAdependent RNA polymerase of bacterial dsRNA virus phi6 from de novo initiation to elongation. J Virol 86:2837–2849

    Google Scholar 

  34. Huang L, Lieberman J (2013) Production of highly potent recombinant siRNAs in Escherichia coli. Nat Protoc 8:2325–2336

    Google Scholar 

  35. Carthew, Clemens, Tuschl (2005) PCR template method for dsRNA-synthesis https://mcmanuslab.ucsf.edu/protocol/pcr-template-method-dsrna-synthesis.

  36. Voloudakis AE, Holeva MC, Sarin LP, Bamford DH, Vargas M, Poranen MM, Tenllado F (2015) Efficient double-stranded RNA production methods for utilization in plant virus control. Methods Mol Biol 1236:255–74

    Google Scholar 

  37. Seiko Jose, Shanmugam Nachimuthu, Sekhar Das, Ajay Kumar (2017) Moth proofing of wool fabric using nano kaolinite. 109: 225–231

    Google Scholar 

  38. Kalyandurg PB, Sundararajan P, Dubey M, Ghadamgahi F, Zahid MA, Whisson S, Vetukuri RR. Spray-induced gene silencing as a potential tool to control potato late blight disease. Phytopathology 11: https://doi.org/10.1094/PHYTO-02-21-0054-SC

  39. Sundaresha S, Sharma S, Bairwa A, Tomar M, Kumar R, Bhardwaj V, Jeevalath A, Bakade R, Salaria N, Thakur K, Singh B.P, Chakrabarti SK (2021) Spraying of dsRNA Molecules Derived from Phytophthora Infestans, as a Plant Protection Strategies for the Management of Potato Late Blight. Preprints 2021020280: https://doi.org/10.20944/preprints202102.0280.v1

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sundaresha, S. et al. (2022). In Vitro Method for Synthesis of Large-Scale dsRNA Molecule as a Novel Plant Protection Strategy. In: Mysore, K.S., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 2408. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1875-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1875-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1874-5

  • Online ISBN: 978-1-0716-1875-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics