Skip to main content

Rapidly Characterizing CRISPR-Cas13 Nucleases Using Cell-Free Transcription-Translation Systems

  • Protocol
  • First Online:
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2404))

Abstract

Cell-free transcription-translation (TXTL) systems produce RNAs and proteins from added DNA. By coupling their production to a biochemical assay, these biomolecules can be rapidly and scalably characterized without the need for purification or cell culturing. Here, we describe how TXTL can be applied to characterize Cas13 nucleases from Type VI CRISPR-Cas systems. These nucleases employ guide RNAs to recognize complementary RNA targets, leading to the nonspecific collateral cleavage of nearby RNAs. In turn, RNA targeting by Cas13 has been exploited for numerous applications, including in vitro diagnostics, programmable gene silencing in eukaryotes, and sequence-specific antimicrobials. As part of the described method, we detail how to set up TXTL assays to measure on-target and collateral RNA cleavage by Cas13 as well as how to assay for putative anti-CRISPR proteins. Overall, the method should be useful for the characterization of Type VI CRISPR-Cas systems and their use in ranging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garamella J, Marshall R, Rustad M, Noireaux V (2016) The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol 5:344–355

    Article  CAS  Google Scholar 

  2. Marshall R, Maxwell CS, Collins SP et al (2017) Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems. Biotechnol Bioeng 114:2137–2141

    Article  CAS  Google Scholar 

  3. Silverman AD, Karim AS, Jewett MC (2020) Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 21:151–170

    Article  CAS  Google Scholar 

  4. Tinafar A, Jaenes K, Pardee K (2019) Synthetic biology goes cell-free. BMC Biol 17

    Google Scholar 

  5. Takahashi MK, Tan X, Dy AJ et al (2018) A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun 9:3347

    Article  Google Scholar 

  6. Swartz JR (2018) Expanding biological applications using cell-free metabolic engineering: an overview. Metab Eng 50:156–172

    Article  CAS  Google Scholar 

  7. Agrawal DK, Marshall R, Noireaux V, Sontag ED (2019) In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller. Nat Commun 10:5760

    Article  CAS  Google Scholar 

  8. Marshall R, Noireaux V (2018) Synthetic biology with an All E. coli TXTL system: quantitative characterization of regulatory elements and gene circuits. Methods Mol Biol 1772:61–93

    Article  CAS  Google Scholar 

  9. Maxwell CS, Jacobsen T, Marshall R et al (2018) A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs. Methods 143:48–57

    Article  CAS  Google Scholar 

  10. Liao C, Ttofali F, Slotkowski RA et al (2019) Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat Commun 10:2948

    Article  Google Scholar 

  11. Marshall R, Maxwell CS, Collins SP et al (2018) Rapid and scalable characterization of crispr technologies using an E. coli cell-free transcription-translation system. Mol Cell 69:146–157.e3

    Article  CAS  Google Scholar 

  12. Marshall R, Beisel CL, Noireaux V (2020) Rapid testing of CRISPR nucleases and guide RNAs in an E. coli cell-free transcription-translation system. STAR Protocol 1:100003

    Article  Google Scholar 

  13. Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361:866–869

    Article  CAS  Google Scholar 

  14. Champer J, Buchman A, Akbari OS (2016) Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet 17:146–159

    Article  CAS  Google Scholar 

  15. Simeonov DR, Marson A (2019) CRISPR-based tools in immunity. Annu Rev Immunol 37:571–597

    Article  CAS  Google Scholar 

  16. Wu WY, Lebbink JHG, Kanaar R et al (2018) Genome editing by natural and engineered CRISPR-associated nucleases. Nat Chem Biol 14:642–651

    Article  CAS  Google Scholar 

  17. Jacobsen T, Ttofali F, Liao C et al (2020) Characterization of Cas12a nucleases reveals diverse PAM profiles between closely-related orthologs. Nucleic Acids Res 48:5624–5638

    Article  CAS  Google Scholar 

  18. Leenay RT, Maksimchuk KR, Slotkowski RA et al (2016) Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell 62:137–147

    Article  CAS  Google Scholar 

  19. Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573

    Article  Google Scholar 

  20. Shmakov S, Abudayyeh OO, Makarova KS et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397

    Article  CAS  Google Scholar 

  21. Yan WX, Chong S, Zhang H et al (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70:327–339.e5

    Article  CAS  Google Scholar 

  22. Mustafa MI, Makhawi AM (2020) SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol 59:e00745-20. https://doi.org/10.1128/JCM.00745-20

    Article  Google Scholar 

  23. Gootenberg JS, Abudayyeh OO, Lee JW et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442

    Article  CAS  Google Scholar 

  24. Kiga K, Tan X-E, Ibarra-Chávez R et al (2020) Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun 11:2934

    Article  CAS  Google Scholar 

  25. Abudayyeh OO, Gootenberg JS, Essletzbichler P et al (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284

    Article  Google Scholar 

  26. Metsky HC, Welch NL, Haradhvala NJ et al Efficient design of maximally active and specific nucleic acid diagnostics for thousands of viruses

    Google Scholar 

  27. Bandaru S, Tsuji MH, Shimizu Y et al (2020) Structure-based design of gRNA for Cas13. Sci Rep 10:11610

    Article  CAS  Google Scholar 

  28. Lin P, Qin S, Pu Q et al (2020) CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells. Mol Cell 78:850–861.e5

    Article  CAS  Google Scholar 

  29. Meeske AJ, Jia N, Cassel AK et al (2020) A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science 369:54–59

    Article  CAS  Google Scholar 

  30. Wandera KG, Collins SP, Wimmer F et al (2020) An enhanced assay to characterize anti-CRISPR proteins using a cell-free transcription-translation system. Methods 172:42–50

    Article  CAS  Google Scholar 

  31. Sun ZZ, Hayes CA, Shin J et al (2013) Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology J Vis Exp e50762

    Google Scholar 

  32. Dondapati SK, Stech M, Zemella A, Kubick S (2020) Cell-free protein synthesis: a promising option for future drug development. BioDrugs 34:327–348

    Article  CAS  Google Scholar 

  33. Johnston WA, Alexandrov K (2014) Production of eukaryotic cell-free lysate from Leishmania tarentolae. Methods Mol Biol 1118:1–15

    Article  CAS  Google Scholar 

  34. Thoring L, Dondapati SK, Stech M et al (2017) High-yield production of “difficult-to-express” proteins in a continuous exchange cell-free system based on CHO cell lysates. Sci Rep 7:11710

    Article  Google Scholar 

  35. Promoters/Catalog/Anderson—parts.igem.org. http://parts.igem.org/Promoters/Catalog/Anderson. Accessed 26 Mar 2020

  36. Shin J, Noireaux V (2010) Efficient cell-free expression with the endogenous E. coli RNA polymerase and sigma factor 70. J Biol Eng 4:8

    Article  Google Scholar 

  37. Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42

    Article  CAS  Google Scholar 

  38. Smargon AA, Cox DBT, Pyzocha NK et al (2017) Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 65:618–630.e7

    Article  CAS  Google Scholar 

  39. Cox DBT, Gootenberg JS, Abudayyeh OO et al (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027

    Article  CAS  Google Scholar 

  40. Meeske AJ, Marraffini LA (2018) RNA guide complementarity prevents self-targeting in type VI CRISPR systems. Mol Cell 71:791–801.e3

    Article  CAS  Google Scholar 

  41. CRISPR-CAS++. https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index. Accessed 27 Mar 2020

  42. Website. https://eu.idtdna.com/codonopt. Accessed 3 Dec 2020

  43. Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  Google Scholar 

  44. O’Connell MR (2019) Molecular mechanisms of RNA targeting by Cas13-containing Type VI CRISPR–Cas systems. J Mol Biol 431:66–87

    Article  Google Scholar 

  45. Primer designing tool. https://www.ncbi.nlm.nih.gov/tools/primer-blast/. Accessed 8 Dec 2020

  46. Sitaraman K, Esposito D, Klarmann G et al (2004) A novel cell-free protein synthesis system. J Biotechnol 110:257–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chunyu Liao for providing the plasmid expressing the Leptotrichia shahii Cas13a, Ms. Fani Ttofali for providing the plasmid expressing the non-targeting gRNA for LsCas13a, and Ms. Franziska Wimmer for providing feedback on the protocol.

Funding

This work was supported by the DARPA Safe Genes program (HR0011-17-2-0042 to C.L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chase L. Beisel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wandera, K.G., Beisel, C.L. (2022). Rapidly Characterizing CRISPR-Cas13 Nucleases Using Cell-Free Transcription-Translation Systems. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 2404. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1851-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1851-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1850-9

  • Online ISBN: 978-1-0716-1851-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics