Skip to main content

Identification of miRNAs Bound to an RNA of Interest by MicroRNA Capture Affinity Technology (miR-CATCH)

  • Protocol
  • First Online:
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2404))

Abstract

microRNA capture affinity technology (miR-CATCH) uses affinity capture biotinylated antisense oligonucleotides to co-purify a target transcript together with all its endogenously bound miRNAs. The miR-CATCH assay is performed to investigate miRNAs bound to a specific mRNA. This method allows to have a total vision of miRNAs bound not only to the 3′UTR but also to the 5′UTR and Coding Region of target messenger RNAs (mRNAs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin Y, Chen Z, Liu X, Zhou X (2013) Evaluating the MicroRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol 936:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Denti MA, Rosa A, Sthandier O, De Angelis FG, Bozzoni I (2004) A new vector, based on the polII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Molecular Ther 10:191–199

    Article  CAS  Google Scholar 

  3. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S (2011) Silencing of microRNAs families by seed-targeting tiny LNAs. Nat Genet 43:371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li P, Chen Y, Juma CA, Yang C, Huang J, Zhang X, Zeng Y (2019) Differential inhibition of target gene expression by human microRNAs. Cell 8:791

    Article  CAS  Google Scholar 

  5. Hassan T, Smith SGJ, Gaughan K, Oglesby IK, O’Neill S, McElvaney NG, Greene CM (2013) Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated antisense oligonucleotide capture affinity technique. Nucleic Acids Res 41:e71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vencken S, Hassan T, McElvaney NG, Smith SGJ, Greene CM (2015) miR-CATCH: microRNA capture affinity technology. In: Sioud M (ed) RNA interference: challenges and therapeutic opportunities, methods in molecular biology, vol 1218. Springer, Heidelberg, pp 365–373

    Chapter  Google Scholar 

  7. Piscopo P, Grasso M, Fontana F, Crestini A, Puopolo M, Del Vescovo V, Venerosi A, Calamandrei G, Vencken SF, Greene CM, Confaloni A, Denti MA (2016) Reduced miR-659-3p levels correlate with progranulin increase in hypoxic conditions: implications for frontotemporal dementia. Front Mol Neurosci 9:31. https://doi.org/10.3389/fnmol.2016.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palfi A, Hokamp K, Hauck SM, Vencken S, Millington-Ward S, Chadderton N, Carrigan M, Kortvely E, Greene CM, Kenna PF, Farrar GJ (2016) microRNA regulatory circuits in a mouse model of inherited retinal degeneration. Sci Rep 6:31431. https://doi.org/10.1038/srep31431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Santi C, Vencken S, Blake J, Haase B, Benes V, Gemignani F, Landi S, Greene CM (2017) Identification ofMiR-21-5p as a functional regulator of MesothelinExpression using MicroRNA capture AffinityCoupled with next generation sequencing. PLoS One 12:e0170999. https://doi.org/10.1371/journal.pone.0170999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Griffith A, Kelly PS, Vencken S, Lao NT, Greene CM, Clynes M, Barron N (2018) miR-CATCH identifies biologically active miRNA regulators of the pro-survival gene XIAP, in Chinese hamster ovary cells. Biotechnol J 13:e1700299. https://doi.org/10.1002/biot.201700299

    Article  CAS  PubMed  Google Scholar 

  11. Ragusa M, Barbagallo D, Chioccarelli T, Manfrevola F, Cobellis G, Di Pietro C, Brex D, Battaglia R, Fasano S, Ferraro B, Sellitto C, Ambrosino C, Roberto L, Purrello M, Pierantoni R, Chianese R (2019) CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs. RNA Biol 16:1237–1248. https://doi.org/10.1080/15476286.2019.1624469

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marranci A, D’Aurizio R, Vencken S, Mero S, Guzzolino E, Rizzo M, Pitto L, Pellegrini M, Chiorino G, Greene CM, PolisenoL (2019) Systematic evaluation of the microRNAome through miR-CATCHv2.0identifies positive and negative regulators of BRAF-X1 mRNA. RNA Biol 16:865–878. https://doi.org/10.1080/15476286.2019.1600934

    Article  PubMed  PubMed Central  Google Scholar 

  13. Precazzini F, Detassis S, Imperatori AS, Denti MA, Campomenosi P (2021) Measurement methods for the development of microRNA-based tests for cancer diagnosis. Int J Mol Sci 21:1176

    Article  Google Scholar 

  14. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. https://doi.org/10.1093/nar/gkg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okonechnikov K, Golosova O, Fursov M, the UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  16. Altschul SF, GishW MW, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  17. Sugimoto N, Nakano M, Nakano S (2000) Thermodynamics-structure relationship of single mismatches in RNA/DNA duplexes. Biochemistry 39:11270–11281. https://doi.org/10.1021/bi000819p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Catherine M. Greene (Royal College of Surgeons in Ireland, Dublin) for having hosted Francesca Fontana in her laboratory in the Fall of 2013, and Sebastian Vencken (Royal College of Surgeons in Ireland, Dublin) for having taught Francesca the miR-CATCH protocol. We also wish to thank Francesca Fontana for having shared with the rest of the Denti Lab her knowledge of the miR-CATCH methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela A. Denti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zeni, A., Grasso, M., Denti, M.A. (2022). Identification of miRNAs Bound to an RNA of Interest by MicroRNA Capture Affinity Technology (miR-CATCH). In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 2404. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1851-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1851-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1850-9

  • Online ISBN: 978-1-0716-1851-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics