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Abstract

Directed evolution is the most recognized methodology for enzyme engineering. The main drawback
resides in its random nature and in the limited sequence exploration; both require screening of thousands
(if not millions) of variants to achieve a target function. Computer-driven approaches can limit laboratorial
screening to a few hundred candidates, enabling and accelerating the development of industrial enzymes. In
this book chapter, the technology adopted at Zymvol is described. An overview of the current development
and future directions in the company is also provided.
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1 Introduction

Natural enzymes are attractive templates for sustainable chemistry
[1, 2] that need to be redesigned to meet industrial requirements.
The most popular approach is directed evolution, where mutations
are introduced randomly in the parental enzyme, mimicking natural
evolution [3]. Although directed evolution is a revolutionary tech-
nique (awarded with the Nobel Prize for Chemistry in 2018),
randomness and limited sequence sampling restrict the number of
potential beneficial mutations. Computational techniques can drive
directed evolution, recycling its results with machine learning [4]
and/or selecting residue positions with high potential of improve-
ment (hot spots) [5]. More radically, computational design can also
replace directed evolution altogether in what is called rational
design: in this case the sequence space screening is done in a
computer, leaving only a few candidates for experimental validation
[6]. The scope of this book chapter is to illustrate the principles of
computational enzyme engineering adopted at Zymvol, our com-
pany, both when accompanying (hot spot prediction) or replacing
(rational design) directed evolution. The main conceptual steps are
described and reconducted to the existing literature.
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Both our enzyme search (ES) and in silico design (ISD) pipelines
combine multiple solutions from bioinformatics, protein design
algorithms, and molecular modeling. The objective of ES is to find
suitable biocatalysts for an input reaction on a target substrate, either
as is or as a favorable template for ISD. The objective of ISD is to
redesign (simulate the effect of mutations) the input enzyme to
efficiently implement the target reaction over the target substrate,
i.e., to achieve/improve a target chemical transformation. Properties
other than activity/specificity/selectivity can be improved, like
enzyme stability (to temperature, pH, solvent, etc.) and solubility.

The cornerstone of our technology is the combination of bio-
informatics with protein design algorithms and empirical/physics-
based simulations that model the interactions between the sub-
strate and the enzyme. Such simulations follow a funnel like scheme
with increasing complexity to gradually filter enzyme candidates
(Fig. 1). In implicit solvent molecular modeling, both enzymes and
ligands are fully flexible, i.e., both the protein side chains and
backbone can move. On the other hand, the solvent (water) is
modeled as a continuous electrostatic field, ignoring its detailed
action as an ensemble of molecules [7]. This approximation is
corrected in explicit solvent molecular modeling, where water is
treated as an ensemble of molecules which can perturb the system
dynamics or participate in the target reaction [7]. Quantum chem-
ical algorithms can model any electronic rearrangement that occurs
along the target reaction, improving accuracy [8]. Throughout the

Fig. 1 Computational workflow for enzyme engineering
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pipeline simulations take into consideration not only mutations in
the active site but also the potential effect of mutations located far
away from the active site. Long range mutations can affect the
encounters between the substrate and the catalytic residues in the
active site or the migration of a substrate/product in/from the
active site [9] (Fig. 2).

In ES, only bioinformatics and implicit solvent molecular mod-
eling are adopted. In ISD, all the steps are included. However,
depending on the nature and complexity of the task in hand,
some of them may be excluded. For instance, quantum mechanics
is not included when other parameters need to be optimized first,
like binding the substrate in the right conformation to convey the
desired reaction.

The program input typically comprises: a target transformation
for the desired substrate and an initial enzyme sequence to be
optimized (in case of ES the latter is not required). The ES output
consists of 8–16 enzymes. Typically an ISD rounddelivers 90 enzyme
variants ranked by priority, but customized solutions are available
(like residue positions for saturation mutagenesis). Both ES and ISD
(one round) typically take up to 4 weeks to deliver results.

In ISD, more prediction rounds (followed by experimental
validation) are possible. Each iteration allows us to include experi-
mental data into our platform, aiming at improving the accuracy of
our predictions for the task in hand. Three ISD rounds are usually
recommended.

For a list of definitions of concepts addressed in this chapter, see
Table 1.

Fig. 2 Levels of theory adopted at Zymvol
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Table 1
Definitions of concepts introduced in the manuscript

Enzyme engineering related concepts

Mutagenesis Introduction of mutations (changes of the nature of a given amino acid) in a
given protein.

Enzyme (re)design Modification of the enzyme sequence to reach a user-defined goal
(design goal).

Hot spot A residue whose mutation to any amino acid yields an improvement toward
the design goal.

Directed evolution
(design)

Thousands/millions of mutations are introduced in a protein; their effect is
measured with rapid techniques (like colorimetric assays).

Rational design A few mutations are introduced based on structural, sequence and mechanism
knowledge. More quantitative assays are adopted to assess their effects.

In silico design (ISD) Millions of mutations are virtually introduced and screened in a protein with
bioinformatic and molecular modeling. The most promising are selected for
experimental validation.

Experimental validation Laboratorial implementation of the mutations suggested in an ISD campaign
and assessment of their effects with respect to the design goal.

Protein structure related concepts

Protein dynamics The ensemble of tridimensional shapes (conformations) that a protein can
adopt in its solvent.

Active site Structural pocket of an enzyme where catalysis occurs.

Long range mutations Mutations located far from the active site.

Protein backbone and
side chain

All the atoms of a protein that include the peptide bond and the adjacent Cα
atoms are part of the backbone. The remaining atoms are part of the side
chain.

Near attack
conformation (NAC)

Enzyme-substrate conformation that resembles the transition state of the
catalytic reaction.

Computational related concepts

Protein design
algorithms

Algorithms designed to predict the effects of mutations on protein structural
stability.

Bioinformatics Analysis of large sequence databases (sequence analysis) to discover
evolutionary and functional patterns.

Molecular modeling Representation of a protein as a collection of atomic nuclei immersed in the
energy potential of their electrons.

Physics-based
simulations

Simulations of the behavior of a protein based on molecular dynamics, Monte
Carlo simulations, and quantum chemistry.

Molecular dynamics Simulations of the time evolution of a protein through the resolution of
Newton’s second law.

Monte Carlo
simulations

Simulations of the dynamical behavior of a protein based on random
displacements of its atoms.

Quantum chemistry Simulations of a protein through the resolution of quantum mechanical
equations.

(continued)
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2 Bioinformatics and Molecular Modeling

In this methodological framework, two steps are included: diagno-
sis and mutagenesis.

In diagnosis, the design principles and mutagenesis library are
the main output. The included steps of diagnosis are the following.

Sequence analysis. The amino acid sequence of the parental enzyme
is blasted against UniRef90, the resulting sequences are aligned
[10] and refined [10, 11]. The latter also provides an estima-
tion of residue entropies, occupancies, and mutual information
(MI) analysis. In such a way, only residues with enough entropy
are retained for the final library and consensus mutations are
suggested to stabilize the protein [12]. Also, potential syner-
gistic effects are captured by MI [13].

Protein dynamics. The structure of the parental enzyme is prepared
and its dynamical behavior is estimated with an internal proto-
col that merges information from normal modes [14], con-
coord [15], and loop sampling algorithms. A thorough analysis
of the resulting structural ensemble can pinpoint potential hot
spots far away from the active site. This analysis includes but is
not limited to dynamical cross correlation matrix [16] and
network techniques [17].

Substrate docking. The next step is to verify whether the substrate is
capable of binding productively to the active site, i.e., respect-
ing all the necessary catalytic contacts. If that were not the case,
the first step is to introduce single mutations to alanine (Ala) to
facilitate the formation. All noncatalytic residues within a cer-
tain threshold from the substrate are included in the computa-
tional mutagenesis library, provided that they are not highly
conserved.

Substrate/product migration. Both the substrate and the product
bound in the active site (in separate models) are perturbed with
an in-house Monte Carlo algorithm (built within Rosetta [18])

Table 1
(continued)

Implicit solvent Representation of the solvent as a homogeneous electrostatic field.

Explicit solvent Representation of the solvent as tridimensional molecules.

Substrate docking Simulation of the interactions between the substrate and the enzyme active
site.

Substrate/product
migration

Entry/leaving of a substrate/product in/out of the enzyme active site.
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where also the side chain and backbone of the surrounding
residues are allowed to move. Simulating the exit of these
molecules can pinpoint residues acting as kinetic bottlenecks,
which usually display many contacts with the substrate. If they
are mutable (i.e., their entropy is large enough), they are intro-
duced in the computational mutagenesis library.

All the selected residues included in the library are allowed to
mutate to populated amino acids, i.e., those that appear in the
multiple sequence alignment (MSA) at those positions with enough
frequency (threshold decided by the user) to preserve protein
expression and robustness. The principle is somewhat similar to
that behind PROSS [19] and FuncLib [20].

In the second step, mutagenesis, millions of enzyme variants
are modeled and screened with an in-house protocol that includes
proprietary and third-party software like Rosetta [21] and FoldX
[22]. Then, the system is refined and relevant structural and ener-
getic properties are extracted to evaluate every variant. A crude
approximation is the simple substrate binding energy vs. catalytic
distances plot.

In the last step, hundreds-thousands of variants are selected for
the next phase. It should be noted that this is true only if the crystal
structure or a high quality model of the parental enzyme is avail-
able. As a matter of fact, low/medium quality homology models
have a tendency to unfold during molecular dynamics
(MD) simulations [23], and the sampled ensemble might not be
reliable. With bad homology models, the final list of mutants to be
delivered to the lab needs to come from this single stage.

3 Molecular Dynamics (Explicit Solvent)

The selected variants are filtered based on MD simulations. Many
features of designed enzymes can be inspected, including hydrogen
bond strength, structural integrity and preorganization, solvent
exposure. The main feature used to filter variants is the population
of near attack conformations (NAC), i.e., structures that resemble
the transition state (TS). This technique proved to be successful in
tuning selectivity with high-throughput MD (HTMD) [24]. In
HTMD many short simulations are run, which was shown to be
more effective than traditional MD for NAC sampling [25].

As anticipated, MD is often not a viable solution in industrial
applications because of the lack of a suitable crystal structure.
Currently, we are evaluating alternative ways to account for
NACs, based on Monte Carlo simulations.
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4 Quantum Mechanics

Finally, chemical reactions are determined by electron rearrange-
ments that lead to bond forming/breaking. These events cannot be
accounted for by bioinformatics, molecular modeling and dynam-
ics. Instead, quantum chemical calculations are necessary. Unfortu-
nately, traditional techniques are as slow as informative so they are
not suited to screen hundreds of variants [8]. Therefore, smart
solutions are needed to decrease the resource and time burden.
This passes through calculating properties, instead of TS energies,
that: (1) correlate with activity; (2) converge much faster than
energy during geometry optimization. One example from literature
is our work with laccases [26, 27]. We developed a scoring method
based on the total spin density localized on the substrate after five
geometry optimization steps (the electron density roughly con-
verged in that time) and a distance-dependent dielectric potential.
Such a shortcut turned out to work well, as can be seen in Fig. 3.
Testing four substrates against two laccases, a linear correlation
between activity and spin density was found. In 2015, each calcula-
tion took ~4 h with six threads. With today’s cloud computing
facilities and better hardware, ~500 variants can be tested in 1 day
for less than €500. In the past years, this solution was adopted in
the successful design of a few oxidoreductases [28–31].

Fig. 3 Electron density-based quantum chemical scoring of activity
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5 Areas of Development

At Zymvol we are currently working/evaluating the following areas
of development to improve our technology.

Machine learning. As nicely shown by Siegel and co-workers for
glycosyl hydrolases in a recent machine learning (ML) study, no
feature strongly correlates with the experimental data
[32]. This suggests that enzymatic function is shaped by
many different molecular properties, of which binding energies
are not even included. This poses a serious question on the
actual knowledge of how enzymes work and whether the key
parameters to label activity are actually family and reaction
dependent. These doubts were confirmed by ML analysis that
we conducted on two data sets: a full mutagenesis study for a
small protein (~60 residues) [33] and the activity data of
96 ligands against 16 esterases [34]. Although both systems
can be predicted with a good degree of accuracy with their
respective ML models, the selected features are distinct. There-
fore, we aim at gathering thousands of data points for key
enzyme families to conduct further research and develop
family-dependent models. On a final note, machine learning
techniques are also in the way to speed up quantum chemical
estimations to unprecedented levels [35].

Long range mutations. It is a matter of fact that mutations that are
far away from the active site can lead to remarkable increases in
activity, improving catalytic preorganization in evolved
enzymes [36]. Despite this success of MD in characterizing
long range mutation effects [37–41], no reliable tool seems
to be available for their quick detection. In our company we are
developing tools that do not involve long and resource inten-
sive MD simulations, shrinking the prediction time for hot
spots from weeks to minutes. Moreover, we aim at not only
singling out hot spots but actually predict the correct amino
acid substitutions. This technology is also expected to have an
impact on predicting the effect of distinct immobilization tech-
niques on enzyme activity, which is of great importance in
industry.

Ancestral reconstruction. Ancestral proteins often show exceptional
properties (including promiscuity and thermal stability) due to
the variegate environmental conditions that shaped our planet
to what it is today. Statistical models are available to reconstruct
the phylogeny of a given enzyme and trace it back to its
ancestors [42].
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Quantum computing. Finally, with a look toward a perhaps more
distant future, one of the most promising suggested applica-
tions of quantum computing is solving classically intractable
biochemistry problems [43]. This includes quantummechanics
calculations but also sampling problems. However, building a
sufficiently large quantum computer remains a prohibitive chal-
lenge nowadays [43].
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