Skip to main content

Non-targeted Lipidomics Using a Robust and Reproducible Lipid Separation Using UPLC with Charged Surface Hybrid Technology and High-Resolution Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2396))

Abstract

Lipids play an important role in the energy storage, cellular signaling, and pathophysiology of diseases such as cancer, neurodegenerative diseases, infections, and diabetes. Due to high importance of diverse lipid classes in human health and disease, manipulating lipid abundance and composition is an important target for metabolic engineering. The extreme structural diversity of lipids in real biological samples is challenging for analytical techniques due to large difference in physicochemical properties of individual lipid species. This chapter describes lipidomic analysis of large sample sets requiring reliable and robust methodology. Rapid and robust methods facilitate the support of longitudinal studies allowing the transfer of methodology between laboratories. We describe a high-throughput reversed-phase LC-MS methodology using Ultra Performance Liquid Chromatography (UPLC®) with charged surface hybrid technology and accurate mass detection for high-throughput non-targeted lipidomics. The methodology showed excellent specificity, robustness, and reproducibility for over 100 LC-MS injections.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Reynolds KB, Taylor MC, Zhou XR, Vanhercke T, Wood CC, Blanchard CL, Singh SP, Petrie JR (2015) Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids. Front Plant Sci 6:164. https://doi.org/10.3389/fpls.2015.00164

    Article  PubMed  PubMed Central  Google Scholar 

  2. Park YK, Nicaud JM (2020) Metabolic engineering for unusual lipid production in Yarrowia lipolytica. Microorganisms 8(12):1937. https://doi.org/10.3390/microorganisms8121937

    Article  CAS  PubMed Central  Google Scholar 

  3. Correa SM, Alseekh S, Atehortua L, Brotman Y, Rios-Estepa R, Fernie AR, Nikoloski Z (2020) Model-assisted identification of metabolic engineering strategies for Jatropha curcas lipid pathways. Plant J 104(1):76–95. https://doi.org/10.1111/tpj.14906

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ (2020) Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica - a review. Bioresour Technol 313:123707. https://doi.org/10.1016/j.biortech.2020.123707

    Article  CAS  PubMed  Google Scholar 

  5. Pouvreau B, Blundell C, Vohra H, Zwart AB, Arndell T, Singh S, Vanhercke T (2020) A versatile high throughput screening platform for plant metabolic engineering highlights the major role of ABI3 in lipid metabolism regulation. Front Plant Sci 11:288. https://doi.org/10.3389/fpls.2020.00288

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ji Y, An J, Hwang D, Ha DH, Lim SM, Lee C, Zhao J, Song HK, Yang EG, Zhou P, Chung HS (2020) Metabolic engineering of Escherichia coli to produce a monophosphoryl lipid A adjuvant. Metab Eng 57:193–202. https://doi.org/10.1016/j.ymben.2019.11.009

    Article  CAS  PubMed  Google Scholar 

  7. Shahid A, Rehman AU, Usman M, Ashraf MUF, Javed MR, Khan AZ, Gill SS, Mehmood MA (2020) Engineering the metabolic pathways of lipid biosynthesis to develop robust microalgal strains for biodiesel production. Biotechnol Appl Biochem 67(1):41–51. https://doi.org/10.1002/bab.1812

    Article  CAS  PubMed  Google Scholar 

  8. Ma T, Shi B, Ye Z, Li X, Liu M, Chen Y, Xia J, Nielsen J, Deng Z, Liu T (2019) Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 52:134–142. https://doi.org/10.1016/j.ymben.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  9. Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H (2019) Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochim Biophys Acta Mol Cell Biol Lipids 1864(4):552–566. https://doi.org/10.1016/j.bbalip.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  10. Peng H, He L, Haritos VS (2018) Metabolic engineering of lipid pathways in Saccharomyces cerevisiae and staged bioprocess for enhanced lipid production and cellular physiology. J Ind Microbiol Biotechnol 45(8):707–717. https://doi.org/10.1007/s10295-018-2046-0

    Article  CAS  PubMed  Google Scholar 

  11. Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110(49):19748–19753. https://doi.org/10.1073/pnas.1309299110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dyer JM, Chapital DC, Kuan JW, Mullen RT, Pepperman AB (2002) Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds. Appl Microbiol Biotechnol 59(2–3):224–230. https://doi.org/10.1007/s00253-002-0997-5

    Article  CAS  PubMed  Google Scholar 

  13. Xu T, Hu C, Xuan Q, Xu G (2020) Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal Chim Acta 1137:156–169. https://doi.org/10.1016/j.aca.2020.09.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94(6):2339–2344. https://doi.org/10.1073/pnas.94.6.2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079. https://doi.org/10.1194/jlr.R300004-JLR200

    Article  CAS  PubMed  Google Scholar 

  16. Camera E, Ludovici M, Galante M, Sinagra JL, Picardo M (2010) Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Res 51(11):3377–3388. https://doi.org/10.1194/jlr.D008391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hummel J, Segu S, Li Y, Irgang S, Jueppner J, Giavalisco P (2011) Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front Plant Sci 2:54. https://doi.org/10.3389/fpls.2011.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lisa M, Cifkova E, Holcapek M (2011) Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J Chromatogr A 1218(31):5146–5156. https://doi.org/10.1016/j.chroma.2011.05.081

    Article  CAS  PubMed  Google Scholar 

  19. Liu K, Jia B, Zhou L, Xing L, Wu L, Li Y, Lu J, Zhang L, Guan S (2020) Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics and lipidomics identify biomarkers for efficacy evaluation of mesalazine in a dextran sulfate sodium-induced ulcerative colitis mouse model. J Proteome Res 20(2):1371–1381. https://doi.org/10.1021/acs.jproteome.0c00757

    Article  CAS  PubMed  Google Scholar 

  20. George AD, Gay MCL, Wlodek ME, Trengove RD, Murray K, Geddes DT (2020) Untargeted lipidomics using liquid chromatography-ion mobility-mass spectrometry reveals novel triacylglycerides in human milk. Sci Rep 10(1):9255. https://doi.org/10.1038/s41598-020-66235-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gill EL, Koelmel JP, Meke L, Yost RA, Garrett TJ, Okun MS, Flores C, Vedam-Mai V (2020) Ultrahigh-performance liquid chromatography-high-resolution mass spectrometry metabolomics and lipidomics study of stool from transgenic Parkinson’s disease mice following immunotherapy. J Proteome Res 19(1):424–431. https://doi.org/10.1021/acs.jproteome.9b00605

    Article  CAS  PubMed  Google Scholar 

  22. Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen YQ, Chen W (2019) Ultra performance liquid chromatography-Q Exactive Orbitrap/mass spectrometry-based lipidomics reveals the influence of nitrogen sources on lipid biosynthesis of Mortierella alpina. J Agric Food Chem 67(39):10984–10993. https://doi.org/10.1021/acs.jafc.9b04455

    Article  CAS  PubMed  Google Scholar 

  23. Tague ED, Woodall BM, Harp JR, Farmer AT, Fozo EM, Campagna SR (2019) Expanding lipidomics coverage: effective ultra performance liquid chromatography-high resolution mass spectrometer methods for detection and quantitation of cardiolipin, phosphatidylglycerol, and lysyl-phosphatidylglycerol. Metabolomics 15(4):53. https://doi.org/10.1007/s11306-019-1512-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao C, Xie P, Wang H, Cai Z (2018) Liquid chromatography-mass spectrometry-based metabolomics and lipidomics reveal toxicological mechanisms of bisphenol F in breast cancer xenografts. J Hazard Mater 358:503–507. https://doi.org/10.1016/j.jhazmat.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  25. Cajka T, Smilowitz JT, Fiehn O (2017) Validating quantitative untargeted lipidomics across nine liquid chromatography-high-resolution mass spectrometry platforms. Anal Chem 89(22):12360–12368. https://doi.org/10.1021/acs.analchem.7b03404

    Article  CAS  PubMed  Google Scholar 

  26. Ulmer CZ, Patterson RE, Koelmel JP, Garrett TJ, Yost RA (2017) A robust lipidomics workflow for mammalian cells, plasma, and tissue using liquid-chromatography high-resolution tandem mass spectrometry. Methods Mol Biol 1609:91–106. https://doi.org/10.1007/978-1-4939-6996-8_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Triebl A, Trotzmuller M, Hartler J, Stojakovic T, Kofeler HC (2017) Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 1053:72–80. https://doi.org/10.1016/j.jchromb.2017.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogiso H, Suzuki T, Taguchi R (2008) Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal Biochem 375(1):124–131. https://doi.org/10.1016/j.ab.2007.12.027

    Article  CAS  PubMed  Google Scholar 

  29. Calvano CD, Bianco M, Ventura G, Losito I, Palmisano F, Cataldi TRI (2020) Analysis of phospholipids, lysophospholipids, and their linked fatty acyl chains in yellow Lupin seeds (Lupinus luteus L.) by liquid chromatography and tandem mass spectrometry. Molecules 25(4):805. https://doi.org/10.3390/molecules25040805

    Article  CAS  PubMed Central  Google Scholar 

  30. Cífková E, Holčapek M, Lísa M, Ovčačíková M, Lyčka A, Lynen F, Sandra P (2012) Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal Chem 84(22):10064–10070. https://doi.org/10.1021/ac3024476

    Article  CAS  PubMed  Google Scholar 

  31. Cífková E, Holčapek M, Lísa M, Vrána D, Melichar B, Študent V (2015) Lipidomic differentiation between human kidney tumors and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. J Chromatogr B Analyt Technol Biomed Life Sci 1000:14–21. https://doi.org/10.1016/j.jchromb.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  32. Triebl A, Trotzmuller M, Eberl A, Hanel P, Hartler J, Kofeler HC (2014) Quantitation of phosphatidic acid and lysophosphatidic acid molecular species using hydrophilic interaction liquid chromatography coupled to electrospray ionization high resolution mass spectrometry. J Chromatogr A 1347:104–110. https://doi.org/10.1016/j.chroma.2014.04.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cifkova E, Hajek R, Lisa M, HolLapek M (2016) Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes. J Chromatogr A 1439:65–73. https://doi.org/10.1016/j.chroma.2016.01.064

    Article  CAS  PubMed  Google Scholar 

  34. Damen CW, Isaac G, Langridge J, Hankemeier T, Vreeken RJ (2014) Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res 55(8):1772–1783. https://doi.org/10.1194/jlr.D047795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Audano M, Maldini M, De Fabiani E, Mitro N, Caruso D (2018) Gender-related metabolomics and lipidomics: from experimental animal models to clinical evidence. J Proteome 178:82–91. https://doi.org/10.1016/j.jprot.2017.11.001

    Article  CAS  Google Scholar 

  36. Stephenson DJ, Hoeferlin LA, Chalfant CE (2017) Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res 189:13–29. https://doi.org/10.1016/j.trsl.2017.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarafian MH, Gaudin M, Lewis MR, Martin FP, Holmes E, Nicholson JK, Dumas ME (2014) Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal Chem 86(12):5766–5774. https://doi.org/10.1021/ac500317c

    Article  CAS  PubMed  Google Scholar 

  38. Salazar C, Jones MD, Sturtevant D, Horn PJ, Crossley J, Zaman K, Chapman KD, Wrona M, Isaac G, Smith NW, Shulaev V (2017) Development and application of sub-2-mum particle CO2 -based chromatography coupled to mass spectrometry for comprehensive analysis of lipids in cottonseed extracts. Rapid Commun Mass Spectrom 31(7):591–605. https://doi.org/10.1002/rcm.7825

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgis Isaac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Isaac, G., Shulaev, V., Plumb, R.S. (2022). Non-targeted Lipidomics Using a Robust and Reproducible Lipid Separation Using UPLC with Charged Surface Hybrid Technology and High-Resolution Mass Spectrometry. In: Shulaev, V. (eds) Plant Metabolic Engineering. Methods in Molecular Biology, vol 2396. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1822-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1822-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1821-9

  • Online ISBN: 978-1-0716-1822-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics