Skip to main content

Wireless Wearable Ultrasound Sensor to Characterize Respiratory Behavior

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Abstract

A wireless wearable sensor on a paper substrate was used to continuously monitor respiratory behavior that can extract and deliver clinically relevant respiratory parameters to a smartphone. Intended to be placed horizontally at the midpoint of the costal margin and the xiphoid process as determined through anatomical analysis and experimental test, the wearable sensor is compact at only 40 × 35 × 6 mm3 in size and 6.5 g weight including a 2.7 g lithium battery. The wearable sensor, consisting of an ultrasound emitter, an ultrasound receiver, wireless transmission system, and associated data acquisition, measures the linear change in circumference at the attachment location by recording and analyzing the changes in ultrasound pressure as the distance between the emitter and the receiver changes. Changes in ultrasound pressure corresponding to linear strain are converted to temporal lung volume data and are wirelessly transmitted to an associated custom-designed smartphone app. Processing the received data, the mobile app is able to display the temporal volume trace and the flow rate vs. volume loop graphs, which are standard plots used to analyze respiration. From the plots, the app is able to extract and display clinically relevant respiration parameters, including forced expiratory volume delivered in the first second of expiration (FEV1) and forced vital capacity (FVC). The sensor was evaluated with eight volunteers, showing a mean difference of the FEV1/FVC ratio as bounded by 0.00–4.25% when compared to the industry-standard spirometer results. By enabling continuous tracking of respiratory behavioral parameters, the wireless wearable sensor helps monitor the progression of chronic respiratory illnesses, including providing warnings to asthma patients and caregivers to pursue necessary medical assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramanathan AK, Headings LM, Dapino MJ (2018) Near DC force measurement using PVDF sensors. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring. SPIE, Bellingham, Washington, p 13

    Google Scholar 

  2. Chen A, Halton AJ, Rhoades RD, Booth JC, Shi X, Bu X, Wu N, Chae J (2019) Wireless wearable ultrasound sensor on a paper substrate to characterize respiratory behavior. ACS Sens 4(4):944–952. https://doi.org/10.1021/acssensors.9b00043

    Article  CAS  PubMed  Google Scholar 

  3. Braman SS (2006) The global burden of asthma. Chest 130(1 Suppl):4S–12S. https://doi.org/10.1378/chest.130.1_suppl.4S

    Article  PubMed  Google Scholar 

  4. Gibson GJ, Loddenkemper R, Lundback B, Sibille Y, (2013) Respiratory health and disease in Europe: the new European Lung White Book. Eur Respir J 42(3):559–63

    Google Scholar 

  5. Malka J, Spahn JD (2016) When cough wheeze and shortness of breath Don’t equal asthma. J Allergy Clin Immunol Pract 4(1):179–181.; ; quiz 182-173. https://doi.org/10.1016/j.jaip.2015.08.008

    Article  PubMed  Google Scholar 

  6. Milgrom H, Wood RP, Ingram D (1998) Respiratory conditions that mimic asthma. Immunol Allergy Clin 18(1):113. https://doi.org/10.1016/S0889-8561(05)70351-9

    Article  Google Scholar 

  7. Cohen KP, Ladd WM, Beams DM, Sheers WS, Radwin RG, Tompkins WJ, Webster JG (1997) Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction. IEEE Trans Biomed Eng 44(7):555–566. https://doi.org/10.1109/10.594896

    Article  CAS  PubMed  Google Scholar 

  8. Semmes BJ, Tobin MJ, Snyder JV, Grenvik A (1985) Subjective and objective measurement of tidal volume in critically III patients. Chest 87(5):577–579

    Article  CAS  Google Scholar 

  9. Davis C, Mazzolini A, Murphy D (1997) A new fibre optic sensor for respiratory monitoring. Australas Phys Eng Sci Med 20(4):214–219

    CAS  PubMed  Google Scholar 

  10. Eriksson I, Berggren L, Hallgren S (1986) CO2 production and breathing pattern during invasive and non-invasive respiratory monitoring. Acta Anaesthesiol Scand 30(6):438–443

    Article  CAS  Google Scholar 

  11. Min SD, Yoon DJ, Yoon SW, Yun YH, Lee M (2007) A study on a non-contacting respiration signal monitoring system using Doppler ultrasound. Med Biol Eng Comput 45(11):1113–1119. https://doi.org/10.1007/s11517-007-0246-2

    Article  PubMed  Google Scholar 

  12. Cop W (1988) Methods devices used in ventilatory monitoring. Encyl Med Dev Instrum 4:2870–2877

    Google Scholar 

  13. Nakajima K, Tamura T, Miike H (1996) Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Med Eng Phys 18(5):365–372. https://doi.org/10.1016/1350-4533(95)00066-6

    Article  CAS  PubMed  Google Scholar 

  14. Nilsson L, Johansson A, Kalman S (2000) Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. J Clin Monit Comput 16(4):309–315. https://doi.org/10.1023/A:1011424732717

    Article  CAS  PubMed  Google Scholar 

  15. Folke M, Cernerud L, Ekstrom M, Hok B (2003) Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput 41(4):377–383. https://doi.org/10.1007/bf02348078

    Article  CAS  PubMed  Google Scholar 

  16. Fenn WO (1951) Mechanics of respiration. Am J Med 10(1):77–90

    Article  CAS  Google Scholar 

  17. Wade OL (1954) Movements of the thoracic cage and diaphragm in respiration. J Physiol 124(2):193–212. https://doi.org/10.1113/jphysiol.1954.sp005099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guin P, Roy A (2016) Design of efficient loadcell for measurement of mechanical impact by piezoelectric PVDF film sensor. AIP Adv 6(9):095122. https://doi.org/10.1063/1.4964148

    Article  CAS  Google Scholar 

  19. Harris GR, Preston RC, Dereggi AS (2000) The impact of piezoelectric PVDF on medical ultrasound exposure measurements, standards, and regulations. IEEE Trans Ultrason Ferroelectr Freq Control 47(6):1321–1335. https://doi.org/10.1109/58.883521

    Article  CAS  PubMed  Google Scholar 

  20. O’Reilly MA, Hynynen K (2010) A PVDF receiver for ultrasound monitoring of transcranial focused ultrasound therapy. IEEE Trans Biomed Eng 57(9):2286–2294. https://doi.org/10.1109/TBME.2010.2050483

    Article  PubMed  PubMed Central  Google Scholar 

  21. Magori V (1994) Ultrasonic sensors in air. In: 1994 Proceedings of IEEE Ultrasonics Symposium, 31 Oct.-3 Nov. 1994, vol 471, pp 471–481. https://doi.org/10.1109/ULTSYM.1994.401632

    Chapter  Google Scholar 

  22. Agostoni E, Mognoni P, Torri G, Saracino F (1965) Relation between changes of rib cage circumference and lung volume. J Appl Physiol 20(6):1179. https://doi.org/10.1152/jappl.1965.20.6.1179

    Article  Google Scholar 

Download references

Acknowledgments

The authors thanks Boehringer Ingelheim for leasing the spirometer from Vitalograph.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, A. et al. (2022). Wireless Wearable Ultrasound Sensor to Characterize Respiratory Behavior. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics