Skip to main content

Deep Learning in Therapeutic Antibody Development

  • Protocol
  • First Online:
Artificial Intelligence in Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2390))

Abstract

Deep learning applied to antibody development is in its adolescence. Low data volumes and biological platform differences make it challenging to develop supervised models that can predict antibody behavior in actual commercial development steps. But successes in modeling general protein behaviors and early antibody models give indications of what is possible for antibodies in general, particularly since antibodies share a common fold. Meanwhile, new methods of data collection and the development of unsupervised and self-supervised deep learning methods like generative models and masked language models give the promise of rich and deep data sets and deep learning architectures for better supervised model development. Together, these move the industry toward improved developability , lower costs, and broader access of biotherapeutics .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100:3451–3461. https://doi.org/10.1007/s00253-016-7388-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chiba Y, Akeboshi H (2009) Glycan engineering and production of “humanized” glycoprotein in yeast cells. Biol Pharm Bull 32:786–795. https://doi.org/10.1248/bpb.32.786

    Article  CAS  PubMed  Google Scholar 

  3. Rives A, Goyal S, Meier J et al (2019) Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci U S A 118(15):e2016239118. https://doi.org/10.1073/pnas.2016239118

  4. Alquraishi M (2019) AlphaFold at CASP13. Bioinformatics 35:4862–4865. https://doi.org/10.1093/bioinformatics/btz422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. AlQuraishi M (2020) A watershed moment for protein structure prediction. Nature 577:627–628. https://doi.org/10.1038/d41586-019-03951-0

    Article  CAS  PubMed  Google Scholar 

  6. Honegger A, Plückthun A (2001) Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol 309:657–670. https://doi.org/10.1006/jmbi.2001.4662

    Article  CAS  PubMed  Google Scholar 

  7. Rocklin GJ, Chidyausiku TM, Goreshnik I et al (2017) Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357:168–175. https://doi.org/10.1126/science.aan0693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmad S, Kumar V, Ramanand KB, Rao NM (2012) Probing protein stability and proteolytic resistance by loop scanning: a comprehensive mutational analysis. Protein Sci 21:433–446. https://doi.org/10.1002/pro.2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pershad K, Kay BK (2013) Generating thermal stable variants of protein domains through phage display. Methods 60:38–45. https://doi.org/10.1016/j.ymeth.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  10. Smialowski P, Doose G, Torkler P et al (2012) PROSO II - a new method for protein solubility prediction. FEBS J 279:2192–2200. https://doi.org/10.1111/j.1742-4658.2012.08603.x

    Article  CAS  PubMed  Google Scholar 

  11. Khurana S, Rawi R, Kunji K et al (2018) DeepSol: a deep learning framework for sequence-based protein solubility prediction. Bioinformatics 34:2605–2613. https://doi.org/10.1093/bioinformatics/bty166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raimondi D, Orlando G, Fariselli P, Moreau Y (2020) Insight into the protein solubility driving forces with neural attention. PLoS Comput Biol 16:1–15. https://doi.org/10.1371/journal.pcbi.1007722

    Article  CAS  Google Scholar 

  13. Jain T, Boland T, Lilov A et al (2017) Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning. Bioinformatics 33:3758–3766. https://doi.org/10.1093/bioinformatics/btx519

    Article  CAS  PubMed  Google Scholar 

  14. Rogers RS, Nightlinger NS, Livingston B et al (2015) Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics. MAbs 7:881–890. https://doi.org/10.1080/19420862.2015.1069454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Delmar JA, Wang J, Choi SW et al (2019) Machine learning enables accurate prediction of asparagine Deamidation probability and rate. Mol Ther Methods Clin Dev 15:264–274. https://doi.org/10.1016/j.omtm.2019.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kotidis P, Kontoravdi C (2020) Harnessing the potential of artificial neural networks for predicting protein glycosylation. Metab Eng Commun 10:e00131. https://doi.org/10.1016/j.mec.2020.e00131

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gagliardi TM, Chelikani R, Yang Y et al (2019) Development of a novel, high-throughput screening tool for efficient perfusion-based cell culture process development. Biotechnol Prog 35:1–12. https://doi.org/10.1002/btpr.2811

    Article  CAS  Google Scholar 

  18. Bergander T, Nilsson-Välimaa K, Öberg K, Lacki KM (2008) High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin. Biotechnol Prog 24:632–639. https://doi.org/10.1021/bp0704687

    Article  CAS  PubMed  Google Scholar 

  19. Benner SW, Welsh JP, Rauscher MA, Pollard JM (2019) Prediction of lab and manufacturing scale chromatography performance using mini-columns and mechanistic modeling. J Chromatogr A 1593:54–62. https://doi.org/10.1016/j.chroma.2019.01.063

    Article  CAS  PubMed  Google Scholar 

  20. Pirrung SM, Parruca da Cruz D, Hanke AT et al (2018) Chromatographic parameter determination for complex biological feedstocks. Biotechnol Prog 34:1006–1018. https://doi.org/10.1002/btpr.2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hefzi H, Ang KS, Hanscho M et al (2017) A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary (CHO) Cell Metabolism. Cell Syst 3:434–443. https://doi.org/10.1016/j.cels.2016.10.020.A

    Article  Google Scholar 

  22. Huuk TC, Hahn T, Doninger K et al (2017) Modeling of complex antibody elution behavior under high protein load densities in ion exchange chromatography using an asymmetric activity coefficient. Biotechnol J 12. https://doi.org/10.1002/biot.201600336

  23. Pirrung SM, van der Wielen LAM, van Beckhoven RFWC et al (2017) Optimization of biopharmaceutical downstream processes supported by mechanistic models and artificial neural networks. Biotechnol Prog 33:696–707. https://doi.org/10.1002/btpr.2435

    Article  CAS  PubMed  Google Scholar 

  24. Goodfellow IJ, Pouget-Abadie J, Mirza M et al (2014) Generative adversarial nets. Adv Neural Inf Process Syst 3:2672–2680. https://doi.org/10.3156/jsoft.29.5_177_2

    Article  Google Scholar 

  25. Gui J, Sun Z, Wen Y, et al (2020) A review on generative adversarial networks: algorithms, theory, and applications. arXiv:2001.06937

    Google Scholar 

  26. Lopez Pinaya WH, Vieira S, Garcia-Dias R, Mechelli A (2020) Autoencoders. Mach Learn:193–208. https://doi.org/10.1016/b978-0-12-815739-8.00011-0

  27. Kovaltsuk A, Leem J, Kelm S et al (2018) Observed antibody space: a resource for data mining next-generation sequencing of antibody repertoires. J Immunol 201:2502–2509. https://doi.org/10.4049/jimmunol.1800708

    Article  CAS  PubMed  Google Scholar 

  28. Amimeur T, Shaver J, Ketchem R et al (2020) Designing feature-controlled humanoid antibody discovery libraries using generative adversarial networks. bioRxiv 2020.04.12.024844; https://doi.org/10.1101/2020.04.12.024844

  29. Friedensohn S, Neumeier D, Khan TA, et al (2020) Convergent selection in antibody repertoires is revealed by deep learning. bioRxiv. https://doi.org/10.1101/2020.02.25.965673

  30. Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv

    Google Scholar 

  31. Li X, Duan X, Yang K et al (2016) Comparative analysis of immune repertoires between Bactrian camel’s conventional and heavy-chain antibodies. PLoS One 11:1–15. https://doi.org/10.1371/journal.pone.0161801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Shaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shaver, J.M., Smith, J., Amimeur, T. (2022). Deep Learning in Therapeutic Antibody Development . In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1787-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1786-1

  • Online ISBN: 978-1-0716-1787-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics