Skip to main content

Recent Advances and Future Directions: Clinical Applications of Intraoperative BOLD-MRI CVR

  • Protocol
  • First Online:
Cerebrovascular Reactivity

Part of the book series: Neuromethods ((NM,volume 175))

Abstract

Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) sequences have gained widespread interest in recent years as an effective way to investigate cerebrovascular reactivity (CVR, a measure of the hemodynamic state of the brain) with a high spatial and temporal resolution. The clinical relevance of CVR in diverse pathologies has been widely tested, especially ischemic cerebrovascular diseases. Here, its importance has been confirmed both preoperatively for a better stratification risk and postoperatively to evaluate the effectiveness of revascularization procedures. Recently, CVR assessments have shown interesting findings in neuro-oncology. The ability to obtain this information intraoperatively is, however, novel and has not been tested. We report our first experience with this intraoperative technique in vascular and oncologic neurosurgical patients and discuss the results of its feasibility and the possible developments of the intraoperative employment of BOLD-CVR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 29 January 2022

    The authors name Alessandro Della Puppa is wrongly listed as “Puppa A.D” and this has been updated.

References

  1. Sam K, Poublanc J, Sobczyk O et al (2015) Assessing the effect of unilateral cerebral revascularisation on the vascular reactivity of the non-intervened hemisphere: a retrospective observational study. BMJ Open 5:e006014

    Article  Google Scholar 

  2. Fierstra J, Sobczyk O, Battisti-Charbonney A et al (2013) Measuring cerebrovascular reactivity: what stimulus to use? J Physiol 591:5809–5821

    Article  CAS  Google Scholar 

  3. Fisher JA, Venkatraghavan L, Mikulis DJ (2018) Magnetic resonance imaging-based cerebrovascular reactivity and hemodynamic reserve: a review of method optimization and data interpretation. Stroke 49:2011

    Article  Google Scholar 

  4. Blair GW, Doubal FN, Thrippleton MJ, Marshall I, Wardlaw JM (2016) Magnetic resonance imaging for assessment of cerebrovascular reactivity in cerebral small vessel disease: a systematic review. J Cereb Blood Flow Metab 36:833–841

    Article  Google Scholar 

  5. Mandell DM, Han JS, Poublanc J et al (2011) Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. AJNR Am J Neuroradiol 32:721–727

    Article  CAS  Google Scholar 

  6. Conklin J, Fierstra J, Crawley AP et al (2010) Impaired cerebrovascular reactivity with steal phenomenon is associated with increased diffusion in white matter of patients with Moyamoya disease. Stroke 41:1610–1616

    Article  Google Scholar 

  7. Conklin J, Fierstra J, Crawley AP et al (2011) Mapping white matter diffusion and cerebrovascular reactivity in carotid occlusive disease. Neurology 77:431–438

    Article  CAS  Google Scholar 

  8. Cogswell PM, Davis TL, Strother MK et al (2017) Impact of vessel wall lesions and vascular stenoses on cerebrovascular reactivity in patients with intracranial stenotic disease. J Magn Reson Imaging 46:1167–1176

    Article  Google Scholar 

  9. Silvestrini M, Vernieri F, Pasqualetti P et al (2000) Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 283:2122–2127

    Article  CAS  Google Scholar 

  10. Ellis MJ, Ryner LN, Sobczyk O et al (2016) Neuroimaging assessment of cerebrovascular reactivity in concussion: current concepts, methodological considerations, and review of the literature. Front Neurol 7:61

    PubMed  PubMed Central  Google Scholar 

  11. Urback AL, MacIntosh BJ, Goldstein BI (2017) Cerebrovascular reactivity measured by functional magnetic resonance imaging during breath-hold challenge: a systematic review. Neurosci Biobehav Rev 79:27–47

    Article  Google Scholar 

  12. Mandell DM, Han JS, Poublanc J et al (2008) Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in Patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke 39:2021–2028

    Article  Google Scholar 

  13. Fraga de Abreu VH, Peck KK, Petrovich-Brennan NM, Woo KM, Holodny AI (2016) Brain tumors: the influence of tumor type and routine MR imaging characteristics at BOLD functional MR imaging in the primary motor gyrus. Radiology 281:876–883

    Article  Google Scholar 

  14. Fierstra J, Conklin J, Krings T et al (2011) Impaired peri-nidal cerebrovascular reserve in seizure patients with brain arteriovenous malformations. Brain 134:100–109

    Article  Google Scholar 

  15. Fierstra J, Poublanc J, Han JS et al (2010) Steal physiology is spatially associated with cortical thinning. J Neurol Neurosurg Psychiatry 81:290–293

    Article  Google Scholar 

  16. Fierstra J, van Niftrik C, Piccirelli M et al (2018) Diffuse gliomas exhibit whole brain impaired cerebrovascular reactivity. Magn Reson Imaging 45:78–83

    Article  Google Scholar 

  17. Fierstra J, van Niftrik C, Warnock G et al (2018) Staging hemodynamic failure with blood oxygen-level-dependent functional magnetic resonance imaging cerebrovascular reactivity: a comparison versus gold standard ((15)O-)H2O-positron emission tomography. Stroke 49:621

    Article  Google Scholar 

  18. Hendrik Bas van Niftrik C, Sebok M, Muscas G et al (2019) Characterizing ipsilateral thalamic diaschisis in symptomatic cerebrovascular steno-occlusive patients. J Cereb Blood Flow Metab 40:563

    Article  Google Scholar 

  19. Fierstra J, van Niftrik B, Piccirelli M et al (2016) Altered intraoperative cerebrovascular reactivity in brain areas of high-grade glioma recurrence. Magn Reson Imaging 34:803–808

    Article  Google Scholar 

  20. Fierstra J, Burkhardt JK, van Niftrik CH et al (2017) Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: feasibility for intraoperative 3 Tesla MRI. Magn Reson Med 77:806–813

    Article  CAS  Google Scholar 

  21. Stienen MN, Fierstra J, Pangalu A, Regli L, Bozinov O (2018) The Zurich checklist for safety in the intraoperative magnetic resonance imaging suite: technical note. Oper Neurosurg (Hagerstown) 16:756

    Article  Google Scholar 

  22. van Niftrik CH, Piccirelli M, Bozinov O et al (2016) Fine tuning breath-hold-based cerebrovascular reactivity analysis models. Brain Behav 6:e00426

    Article  Google Scholar 

  23. van Niftrik CHB, Piccirelli M, Bozinov O et al (2017) Iterative analysis of cerebrovascular reactivity dynamic response by temporal decomposition. Brain Behav 7:e00705

    Article  Google Scholar 

  24. Muscas G, Bas van Niftrik CH, Fierstra J et al (2019) Feasibility and safety of intraoperative BOLD functional MRI cerebrovascular reactivity to evaluate extracranial-to-intracranial bypass efficacy. Neurosurg Focus 46:E7

    Article  Google Scholar 

  25. Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95:1834–1839

    Article  CAS  Google Scholar 

  26. Hsu YY, Chang CN, Jung SM et al (2004) Blood oxygenation level-dependent MRI of cerebral gliomas during breath holding. J Magn Reson Imaging 19:160–167

    Article  Google Scholar 

  27. Fisher JA (2016) The CO2 stimulus for cerebrovascular reactivity: fixing inspired concentrations vs. targeting end-tidal partial pressures. J Cereb Blood Flow Metab 36:1004–1011

    Article  CAS  Google Scholar 

  28. Carrera E, Kurtz P, Badjatia N et al (2010) Cerebrovascular carbon dioxide reactivity and delayed cerebral ischemia after subarachnoid hemorrhage. Arch Neurol 67:434–439

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Muscas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muscas, G., van Niftrik, C.H.B., Sebök, M., Puppa, A.D., Regli, L., Fierstra, J. (2022). Recent Advances and Future Directions: Clinical Applications of Intraoperative BOLD-MRI CVR. In: Chen, J., Fierstra, J. (eds) Cerebrovascular Reactivity. Neuromethods, vol 175. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1763-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1763-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1762-5

  • Online ISBN: 978-1-0716-1763-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics