Skip to main content

Use of BRET to Measure β-Arrestin Recruitment at Oxytocin and Vasopressin Receptors

  • Protocol
  • First Online:
Oxytocin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2384))

Abstract

Bioluminescence resonance energy transfer (BRET) is a cutting-edge biophysical technique used for exploring G protein-coupled receptor (GPCR) pharmacology. BRET relies on the nonradiative energy transfer from a luciferase energy donor to an acceptor fluorophore after oxidation of a luciferase substrate. This energy transfer occurs only if the donor and acceptor are within close proximity. Over the past few years, BRET has been successfully applied to study GPCR oligomerization as well as interactions of receptors with G proteins, G protein-coupled receptor kinases (GRKs), or β-arrestins. Herein, we describe how BRET can be applied to study signaling at the oxytocin receptor (OTR) and vasopressin receptors, thereby enabling the identification of (biased) ligands and molecular probes for investigating receptor functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoddart LA, Johnstone EKM, Wheal AJ et al (2015) Application of BRET to monitor ligand binding to GPCRs. Nat Methods 12(7):661–663

    Article  CAS  Google Scholar 

  2. Alcobia DC, Ziegler AI, Kondrashov A et al (2018) Visualizing ligand binding to a GPCR in vivo using NanoBRET. iScience 6:280–288

    Article  CAS  Google Scholar 

  3. Okashah N, Wan Q, Ghosh S et al (2019) Variable G protein determinants of GPCR coupling selectivity. Proc Natl Acad Sci U S A 116(24):12054–12059

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfleger KD, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174

    Article  CAS  Google Scholar 

  5. Pfleger KD, Seeber RM, Eidne KA (2006) Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat Protoc 1(1):337–345

    Article  CAS  Google Scholar 

  6. Kocan M, See HB, Seeber RM et al (2008) Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein-coupled receptors in live cells. J Biomol Screen 13(9):888–898

    Article  CAS  Google Scholar 

  7. Englebretsen DR, Harding DR (1992) Solid phase peptide synthesis on hydrophilic supports. Part II--studies using Perloza beaded cellulose. Int J Pept Protein Res 40(6):487–496

    Article  CAS  Google Scholar 

  8. Pfleger KD, Dromey JR, Dalrymple MB et al (2006) Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Cell Signal 18(10):1664–1670

    Article  CAS  Google Scholar 

  9. Machleidt T, Woodroofe CC, Schwinn MK et al (2015) NanoBRET--A novel BRET platform for the analysis of protein-protein interactions. ACS Chem Biol 10(8):1797–1804

    Article  CAS  Google Scholar 

  10. Stoddart LA, Kilpatrick LE, Hill SJ (2018) NanoBRET approaches to study ligand binding to GPCRs and RTKs. Trends Pharmacol Sci 39(2):136–147

    Article  CAS  Google Scholar 

  11. Dale NC, Johnstone EKM, White CW et al (2019) NanoBRET: the bright future of proximity-based assays. Front Bioeng Biotechnol 7:56

    Article  Google Scholar 

  12. Terrillon S, Durroux T, Mouillac B et al (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol 17(4):677–691

    Article  CAS  Google Scholar 

  13. Wrzal PK, Devost D, Petrin D et al (2012) Allosteric interactions between the oxytocin receptor and the beta2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization. Cell Signal 24(1):342–350

    Article  CAS  Google Scholar 

  14. Romero-Fernandez W, Borroto-Escuela DO, Agnati LF et al (2013) Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Mol Psychiatry 18(8):849–850

    Article  CAS  Google Scholar 

  15. Hasbi A, Devost D, Laporte SA et al (2004) Real-time detection of interactions between the human oxytocin receptor and G protein-coupled receptor kinase-2. Mol Endocrinol 18(5):1277–1286

    Article  CAS  Google Scholar 

  16. Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17(4):243–260

    Article  CAS  Google Scholar 

  17. Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 17(3):126–139

    Article  CAS  Google Scholar 

  18. Busnelli M, Sauliere A, Manning M et al (2012) Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem 287(6):3617–3629

    Article  CAS  Google Scholar 

  19. Duerrauer L, Muratspahić E, Gattringer J et al (2019) I8-arachnotocin–an arthropod-derived G protein-biased ligand of the human vasopressin V2 receptor. Sci Rep 9(1):19295

    Article  CAS  Google Scholar 

  20. Kocan M, See HB, Sampaio NG et al (2009) Agonist-independent interactions between beta-arrestins and mutant vasopressin type II receptors associated with nephrogenic syndrome of inappropriate antidiuresis. Mol Endocrinol 23(4):559–571

    Article  CAS  Google Scholar 

  21. Namkung Y, Le Gouill C, Lukashova V et al (2016) Monitoring G protein-coupled receptor and beta-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun 7:12178

    Article  Google Scholar 

  22. Rajagopal S, Ahn S, Rominger DH et al (2011) Quantifying ligand bias at seven-transmembrane receptors. Mol Pharmacol 80(3):367–377

    Article  CAS  Google Scholar 

  23. Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12(3):205–216

    Article  CAS  Google Scholar 

  24. Parreiras-e-Silva LT, Vargas-Pinilla P, Duarte DA et al (2017) Functional New World monkey oxytocin forms elicit an altered signaling profile and promotes parental care in rats. Proc Natl Acad Sci U S A 114(34):9044–9049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Edin Muratspahić and Jasmin Gattringer contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian W. Gruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muratspahić, E., Gattringer, J., Gruber, C.W. (2022). Use of BRET to Measure β-Arrestin Recruitment at Oxytocin and Vasopressin Receptors. In: Werry, E.L., Reekie, T.A., Kassiou, M. (eds) Oxytocin. Methods in Molecular Biology, vol 2384. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1759-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1759-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1758-8

  • Online ISBN: 978-1-0716-1759-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics