Skip to main content

Membrane Molecular Interactions and Induced Structures of CPPs

  • Protocol
  • First Online:
Cell Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2383))

Abstract

Cell penetrating peptides (CPPs) are generally defined as short positively charged peptides, containing 5–30 amino acids. Based on their physicochemical properties, they are classified as three main groups, namely hydrophobic, amphipathic, and hydrophilic. They are capable of interacting with the cell membrane without inducing serious toxicity, and they can carry cargo molecules across the membrane. Cargo molecules could be different therapeutics which makes CPPs valuable in the field of drug delivery into living cells. Nowadays, CPPs are considered as potential parts of therapeutics against several diseases.

Despite similarities in their primary structure, the interactions of CPPs with a cell membrane may vary a lot. This is even more complicated when the CPP is bound to the cargo molecule. The mechanism(s) of their cellular uptake and endosomal escape have not been completely resolved. Understanding the mechanism of membrane interaction will help us designing a CPP with enhanced, selective cargo delivery, hopefully resulting in better disease treatments. So far energy independent direct membrane penetration and energy-dependent endocytosis have been suggested as two main mechanisms of cellular entry for CPPs, and both may be applicable for the same CPP-complex, depending on the conditions.

In order to understand which mechanism is associated with a particular CPP ’s cellular uptake in a particular cell (sometimes including endosomal escape), different biological and biophysical methods and strategies have been applied. In this chapter, we will address several biophysical methods, such as fluorescence spectroscopy, circular dichroism (CD) spectroscopy, dynamic light scattering, and NMR .

We also review different membrane model systems which are suitable for the biophysical studies. These include large unilamellar phospholipid vesicles (LUVs ), which are the most commonly used in the lipid–peptide interaction studies. Detergent micelles and mixed micelles (bicelles) are also suitable membrane model systems, particularly in high-resolution NMR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruseska I, Zimmer A (2020) Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol 11:101–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walrant A, Cardon S, Burlina F, Sagan S (2017) Membrane crossing and Membranotropic activity of cell-penetrating peptides: dangerous liaisons? Acc Chem Res 50:2968–2975

    Article  CAS  PubMed  Google Scholar 

  3. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pooga H, Arukuusk P, Langel Ü, Pooga M (2016) Characteristics of cell-penetrating/nucleic acid nanoparticles. Mol Pharm 13:172–179

    Article  PubMed  Google Scholar 

  5. Silva S, Almeida AJ, Vale N (2019) Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomol Ther 9:22

    Google Scholar 

  6. Löfgren Söderberg K, Guterstam P, Langel Ü, Gräslund A (2014) Targeting prion propagation using peptide constructs with signal sequence motifs. Arch Biochem Biophys 564:254–261

    Article  PubMed  Google Scholar 

  7. Henning-Knechtel A, Kumar S, Wallin C, Krol S, Wärmländer S, Jarvet J, Esposito G, Kirmizialtin S, Gräslund A, Hamilton AD, Magzoub M (2020) Designed cell-penetrating peptide inhibitors of amyloid-beta aggregation and cytotoxicity. Cell Rep Phys Sci 1(2):100014

    Article  Google Scholar 

  8. Madani F, Gräslund A (2015) Investigating membrane interactions and structures of CPPs. In: Langel Ü (ed) Cell penetrating peptides: methods and protocols (methods in melocular biology), 2nd edn. Springer, New York

    Google Scholar 

  9. Sessa G, Weissmann G (1968) Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 9(3):310–318

    Article  CAS  PubMed  Google Scholar 

  10. Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508

    Article  CAS  PubMed  Google Scholar 

  11. Lasic DD (1988) The mechanism of vesicle formation. Biochem J 256:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ong SGM, Chitneni M, Lee KS, Ming LC, Yuen KH (2016) Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics 8(4):36

    Article  PubMed Central  Google Scholar 

  13. Jin AJ, Huster D, Gawrisch K, Nossal R (1999) Light scattering characterization of extruded lipid vesicles. Eur Biophys J 28:187–199

    Article  CAS  PubMed  Google Scholar 

  14. Sharmin S, Islam MZ, Karal MA, Alam Shibly SU, Dohra H, Yamazaki M (2016) Effects of lipid composition on the entry of cell-penetrating peptide Oligoarginine into single vesicles. Biochemistry 55(30):4154–4165

    Article  CAS  PubMed  Google Scholar 

  15. Niesman MR, Khoobehi B, Peyman GA (1992) Encapsulation of sodium fluorescein for dye release studies. Invest Ophthalmol Vis Sci 33:2113–2119

    CAS  PubMed  Google Scholar 

  16. Schwarz G, Arbuzova A (1995) Pore kinetics reflected in the Dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta Biomembr 1239:51–57

    Article  Google Scholar 

  17. Thorén PEG, Persson D, Esbjörner EK, Goksör M, Lincoln P, Nordén B (2004) Membrane binding and translocation of cell-penetrating peptides. Biochemistry 43:3471–3489

    Article  PubMed  Google Scholar 

  18. Bárány-Wallje E, Keller S, Serowy S, Geibel S, Pohl P, Bienert M, Dathe M (2005) A critical reassessment of Penetratin translocation across lipid membranes. Biophys J 89:2513–2521

    Article  PubMed  PubMed Central  Google Scholar 

  19. Magzoub M, Pramanik A, Gräslund A (2005) Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry 44:14890–14897

    Article  CAS  PubMed  Google Scholar 

  20. Björklund J, Biverståhl H, Gräslund A, Mäler L, Brzezinski P (2006) Real-time transmembrane translocation of Penetratin driven by light-generated proton pumping. Biophys J 91:L29–L31

    Article  PubMed  PubMed Central  Google Scholar 

  21. Terrone D, Sang SLW, Roudaia L, Silvius JR (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a Transbilayer potential. Biochemistry 42:13787–13799

    Article  CAS  PubMed  Google Scholar 

  22. Guterstam P, Madani F, Hirose H, Takeuchi T, Futaki S, El Andaloussi S, Gräslund A, Langel Ü (2009) Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion Pyrenebutyrate. Biochim Biophys Acta Biomembr 1788:2509–2517

    Article  CAS  Google Scholar 

  23. Guo Z, Peng H, Kang J, Sun D (2016) Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications (review). Biomed Rep 4:528–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pooga M, Hällbrink M, Zorko M, Langel Ü (1998) Cell penetration by transportan. FASEB J 12(1):67–77

    Article  CAS  PubMed  Google Scholar 

  25. Soomets U, Lindgren M, Gallet X, Hällbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, Brasseur R, Langel Ü (2000) Deletion analogues of transportan. Biochim Biophys Acta 1467(1):165–176

    Article  CAS  PubMed  Google Scholar 

  26. Ziegler A (2008) Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 60(4-5):580–597

    Article  CAS  PubMed  Google Scholar 

  27. Magzoub M, Gräslund A (2004) Cell-penetrating peptides: from inception to application. Q Rev Biophys 37(2):147–195

    Article  CAS  PubMed  Google Scholar 

  28. Bárány-Wallje E, Gaur J, Lundberg P, Langel Ü, Gräslund A (2007) Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo. FEBS Lett 581(13):2389–2393

    Article  PubMed  Google Scholar 

  29. Vasconcelos L, Madani F, Arukuusk P, Parnaste L, Gräslund A, Langel Ü (2014) Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. Biochim Biophys Acta 1838:3118–3129

    Article  CAS  PubMed  Google Scholar 

  30. Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, Burvenich C, Polis I, De Spiegeleer B (2015) Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One 10(10):e0139652

    Article  PubMed  PubMed Central  Google Scholar 

  31. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    Article  CAS  PubMed  Google Scholar 

  32. Elmquist A, Lindgren M, Bartfai T, Langel Ü (2001) VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269(2):237–244

    Article  CAS  PubMed  Google Scholar 

  33. El-Andaloussi S, Johansson HJ, Holm T, Langel Ü (2007) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15(10):1820–1826

    Article  CAS  PubMed  Google Scholar 

  34. Magzoub M, Eriksson LEG, Gräslund A (2002) Conformational states of the cell-penetrating peptide Penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Biochim Biophys Acta Biomembr 1563:53–63

    Article  CAS  Google Scholar 

  35. Magzoub M, Eriksson LEG, Gräslund A (2003) Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophys Chem 103:271–288

    Article  CAS  PubMed  Google Scholar 

  36. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840

    Article  CAS  PubMed  Google Scholar 

  37. Vivès E, Brodin P, Lebleu B (1997) A truncated HIV-1 tat protein basic domain rapidly Translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  Google Scholar 

  38. Dietz GP, Bähr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 27(2):85–131

    Article  CAS  PubMed  Google Scholar 

  39. Yu HH, Sakamoto K, Akishiba M, Tamemoto N, Hirose H, Nakase I, Imanishi M, Madani F, Gräslund A, Futaki S (2020) Conversion of cationic amphiphilic lytic peptides to cell-penetration peptides. Pept Sci 112:24144

    Article  Google Scholar 

  40. Magzoub M, Kilk K, Eriksson LEG, Langel Ü, Gräslund A (2001) Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochim Biophys Acta Biomembr 1512:77–89

    Article  CAS  Google Scholar 

  41. Bárány-Wallje E, Andersson A, Gräslund A, Mäler L (2004) NMR solution structure and position of Transportan in neutral phospholipid Bicelles. FEBS Lett 567:265–269

    Article  PubMed  Google Scholar 

  42. Lindberg M, Järvet J, Langel Ü, Gräslund A (2001) Secondary structure and position of the cell-penetrating peptide Transportan in SDS micelles as determined by NMR. Biochemistry 40:3141–3149

    Article  CAS  PubMed  Google Scholar 

  43. Lindberg M, Biverståhl H, Gräslund A, Mäler L (2003) Structure and positioning comparison of two variants of Penetratin in two different membrane mimicking systems by NMR. Eur J Biochem 270:3055–3063

    Article  CAS  PubMed  Google Scholar 

  44. Salomone F, Cardarelli F, Di Luca M, Boccardi C, Nifosì R, Bardi G, Di Bari L, Serresi M, Beltram F (2012) A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J Control Release 163:293–303

    Article  CAS  PubMed  Google Scholar 

  45. Eiríksdóttir E, Konate K, Langel Ü, Divita G, Deshayes S (2010) Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim Biophys Acta Biomembr 1798:1119–1128

    Article  Google Scholar 

  46. Regberg J, Vasconcelos L, Madani F, Langel Ü, Hällbrink M (2016) pH-responsive PepFect cell-penetrating peptides. Int J Pharm 501:32–38

    Article  CAS  PubMed  Google Scholar 

  47. Arukuusk P, Pärnaste L, Margus H, Eriksson NK, Vasconcelos L, Padari K, Pooga M, Langel Ü (2013) Differential endosomal pathways for radically modified peptide vectors. Bioconjug Chem 24:1721–1732

    Article  CAS  PubMed  Google Scholar 

  48. Lindberg M, Jarvet J, Langel Ü, Gräslund A (2001) Secondary structure and position of the cell-penetrating peptide Transportan in SDS micelles as determined by NMR. Biochemistry 40:3141–3149

    Article  CAS  PubMed  Google Scholar 

  49. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

  50. Wüthrich K (1990) Protein-structure determination in solution by NMR-spectroscopy. J Biol Chem 265:22059–22062

    Article  PubMed  Google Scholar 

  51. Ladizhansky V (2017) Applications of solid-state NMR to membrane proteins. Biochim Biophys Acta Proteins Proteom 1865:1577–1586

    Article  CAS  PubMed  Google Scholar 

  52. Macdonald RC, Macdonald RI, Menco BPM, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, Unilamellar vesicles. Biochim Biophys Acta 1061:297–303

    Article  CAS  PubMed  Google Scholar 

  53. Frisken BJ, Asman C, Patty PJ (2000) Studies of vesicle extrusion. Langmuir 16:928–933

    Article  CAS  Google Scholar 

  54. Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858:161–168

    Article  CAS  PubMed  Google Scholar 

  55. Nayar R, Hope MJ, Cullis PR (1989) Generation of large Unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. Biochim Biophys Acta 986:200–206

    Article  CAS  Google Scholar 

  56. Raffy S, Teissie J (1999) Control of lipid membrane stability by cholesterol content. Biophys J 76(4):2072–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Madani, F., Gräslund, A. (2022). Membrane Molecular Interactions and Induced Structures of CPPs. In: Langel, Ü. (eds) Cell Penetrating Peptides. Methods in Molecular Biology, vol 2383. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1752-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1752-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1751-9

  • Online ISBN: 978-1-0716-1752-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics