Skip to main content

Using Mass Cytometry to Address Tfh and Tfr Heterogeneity

  • Protocol
  • First Online:
T-Follicular Helper Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2380))

Abstract

Recent advances in single-cell technologies have made it possible to gather increased amounts of information about even rare cell subtypes. In particular, mass cytometry is able to assess the expression of 30–50 proteins on millions of cells. Within CD4 T-cells, T-follicular helper cells (Tfh) and their regulatory counterpart, T-follicular regulatory cells (Tfr), localize to the B-cell follicle and have specialized roles in the maintenance and regulation of B-cell antibody production. The frequency of Tfh and Tfr in circulation has also been associated with ongoing antibody responses.

In this chapter, we detail methods to analyze the frequency and phenotype of the populations of Tfh and Tfr found in humans by mass cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crotty S (2019) T follicular helper cell biology: a decade of discovery and diseases. Immunity 50(5):1132–1148. https://doi.org/10.1016/j.immuni.2019.04.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wing JB, Lim EL, Sakaguchi S (2020) Control of foreign Ag-specific Ab responses by Treg and Tfr. Immunol Rev 296(1):104–119. https://doi.org/10.1111/imr.12888

    Article  PubMed  CAS  Google Scholar 

  3. Fonseca VR, Agua-Doce A, Maceiras AR et al (2017) Human blood Tfr cells are indicators of ongoing humoral activity not fully licensed with suppressive function. Sci Immunol 2(14). https://doi.org/10.1126/sciimmunol.aan1487

  4. Liu C, Wang D, Lu S et al (2018) Increased circulating follicular Treg cells are associated with lower levels of autoantibodies in patients with rheumatoid arthritis in stable remission. Arthritis Rheumatol 70(5):711–721. https://doi.org/10.1002/art.40430

    Article  PubMed  CAS  Google Scholar 

  5. Wing JB, Kitagawa Y, Locci M et al (2017) A distinct subpopulation of CD25(−) T-follicular regulatory cells localizes in the germinal centers. Proc Natl Acad Sci U S A 114(31):E6400–E6409. https://doi.org/10.1073/pnas.1705551114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Alshekaili J, Chand R, Lee CE et al (2018) STAT3 regulates cytotoxicity of human CD57+ CD4+ T cells in blood and lymphoid follicles. Sci Rep 8(1):3529. https://doi.org/10.1038/s41598-018-21389-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Locci M, Havenar-Daughton C, Landais E et al (2013) Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39(4):758–769. https://doi.org/10.1016/j.immuni.2013.08.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. He J, Tsai LM, Leong YA et al (2013) Circulating precursor CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39(4):770–781. https://doi.org/10.1016/j.immuni.2013.09.007

    Article  PubMed  CAS  Google Scholar 

  9. Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165(4):780–791. https://doi.org/10.1016/j.cell.2016.04.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Leipold MD, Newell EW, Maecker HT (2015) Multiparameter phenotyping of human PBMCs using mass cytometry. Methods Mol Biol 1343:81–95. https://doi.org/10.1007/978-1-4939-2963-4_7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hartmann FJ, Simonds EF, Bendall SC (2018) A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci Rep 8(1):10770. https://doi.org/10.1038/s41598-018-28791-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mei HE, Leipold MD, Maecker HT (2016) Platinum-conjugated antibodies for application in mass cytometry. Cytometry A 89(3):292–300. https://doi.org/10.1002/cyto.a.22778

    Article  PubMed  CAS  Google Scholar 

  13. Lee BH, Rahman AH (2019) Acquisition, processing, and quality control of mass cytometry data. Methods Mol Biol 1989:13–31. https://doi.org/10.1007/978-1-4939-9454-0_2

  14. Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89(12):1084–1096. https://doi.org/10.1002/cyto.a.23030

    Article  PubMed  CAS  Google Scholar 

  15. Kimball AK, Oko LM, Bullock BL et al (2018) A beginner’s guide to analyzing and visualizing mass cytometry data. J Immunol 200(1):3–22. https://doi.org/10.4049/jimmunol.1701494

    Article  PubMed  CAS  Google Scholar 

  16. Samusik N, Good Z, Spitzer MH et al (2016) Automated mapping of phenotype space with single-cell data. Nat Methods 13(6):493–496. https://doi.org/10.1038/nmeth.3863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chevrier S, Crowell HL, Zanotelli VRT et al (2018) Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst 6(5):612–620.e5. https://doi.org/10.1016/j.cels.2018.02.010

  18. Dawson NAJ, Lam AJ, Cook L et al (2018) An optimized method to measure human FOXP3(+) regulatory T cells from multiple tissue types using mass cytometry. Eur J Immunol 48(8):1415–1419. https://doi.org/10.1002/eji.201747407

  19. Mei HE, Leipold MD, Schulz AR et al (2015) Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J Immunol 194(4):2022–2031. https://doi.org/10.4049/jimmunol.1402661

  20. Wong MT, Chen J, Narayanan S et al (2015) Mapping the diversity of follicular helper T cells in human blood and tonsils using high-dimensional mass cytometry analysis. Cell Rep 11(11):1822–1833. https://doi.org/10.1016/j.celrep.2015.05.022

Download references

Acknowledgments

The authors would like to thank Rika Ishii for technical support and Dr. Ee Lyn Lim for proofreading the document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Sakaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wing, J.B., Sakaguchi, S. (2022). Using Mass Cytometry to Address Tfh and Tfr Heterogeneity. In: Graca, L. (eds) T-Follicular Helper Cells. Methods in Molecular Biology, vol 2380. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1736-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1736-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1735-9

  • Online ISBN: 978-1-0716-1736-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics