Skip to main content

Coarse-Grained Simulations of Protein Folding: Bridging Theory and Experiments

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

Abstract

Computational coarse-grained models play a fundamental role as a research tool in protein folding, and they are important in bridging theory and experiments. Folding mechanisms are generally discussed using the energy landscape framework, which is well mapped within a class of simplified structure-based models. In this chapter, simplified computer models are discussed with special focus on structure-based ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Onuchic JN (2014) Physics transforming the life sciences. Phys Biol 11:053006. https://doi.org/10.1088/1478-3975/11/5/053006

    Article  PubMed  Google Scholar 

  2. Onuchic JN, Nymeyer H, García AE, Chahine J, Socci ND (2000) The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. Adv Protein Chem 53:87–152

    Article  CAS  Google Scholar 

  3. Goldstein RA, Luthey-Schulten ZA, Wolynes PG (1992) Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc Natl Acad Sci 89:9029–9033. https://doi.org/10.1073/pnas.89.19.9029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bryngelson JD, Wolynes PG (1987) Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci U S A 84:7524–7528. https://doi.org/10.1073/pnas.84.21.7524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryngelson JD, Wolynes PG (1989) Intermediates and barrier crossing in a random energy model (with applications to protein folding). J Phys Chem 93:6902–6915. https://doi.org/10.1021/j100356a007

    Article  CAS  Google Scholar 

  6. Jin S, Contessoto VG, Chen M, Schafer NP, Lu W, Chen X, Bueno C, Hajitaheri A, Sirovetz BJ, Davtyan A, Papoian GA (2020) AWSEM-Suite: a protein structure prediction server based on template-guided, coevolutionary-enhanced optimized folding landscapes. Nucleic Acids Res 48(W1):W25–W30. https://doi.org/10.1093/nar/gkaa356

  7. Wang Q, Diehl MR, Jana B, Cheung MS, Kolomeisky AB, Onuchic JN (2017) Molecular origin of the weak susceptibility of kinesin velocity to loads and its relation to the collective behavior of kinesins. Proc Natl Acad Sci U S A 114:201710328. https://doi.org/10.1073/pnas.1710328114

    Article  CAS  Google Scholar 

  8. Staquicini DI, Tang FHF, Markosian C, Yao VJ, Staquicini FI, Dodero-Rojas E, Contessoto VG, Davis D, O’Brien P, Habib N, Smith TL, Bruiners N, Sidman RL, Gennaro ML, Lattime EC, Libutti SK, Whitford PC, Burley SK, Onuchic JN, Arap W (2021) Renata pasqualini design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. Proc Natl Acad Sci 118(30):e2105739118. https://doi.org/10.1073/pnas.2105739118

  9. Roy S, Onuchic JN, Sanbonmatsu KY (2017) Cooperation between magnesium and metabolite controls collapse of the SAM-I riboswitch. Biophys J 113:348–359. https://doi.org/10.1016/j.bpj.2017.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Echeverria I, Papoian G (2016) Perspectives on the coarse-grained models of DNA. In: Many-body effects and electrostatics in biomolecules. Pan Stanford, Singapore, pp 535–570

    Google Scholar 

  11. Zhao H, Winogradoff D, Bui M, Dalal Y, Papoian GA (2016) Promiscuous histone Mis-assembly is actively prevented by chaperones. J Am Chem Soc 138:13207–13218. https://doi.org/10.1021/jacs.6b05355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen K, Whitford PC (2017) Challenges in describing ribosome dynamics. Phys Biol 14:023001. https://doi.org/10.1088/1478-3975/aa626b

    Article  CAS  PubMed  Google Scholar 

  13. Whitford PC (2016) Quantifying the energy landscape of ribosome function. Biophys J 110:352a. https://doi.org/10.1016/j.bpj.2015.11.1898

    Article  Google Scholar 

  14. Noel JK, Chahine J, Leite VBP, Whitford PC (2014) Capturing transition paths and transition states for conformational rearrangements in the ribosome. Biophys J 107:2881–2890. https://doi.org/10.1016/j.bpj.2014.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang B, Wolynes P (2015) Shape transitions and chiral symmetry breaking in the energy landscape of the mitotic chromosome. Phys Rev Lett 116(24):248101. https://doi.org/10.1101/031260

    Article  CAS  Google Scholar 

  16. Di Pierro M, Zhang B, Aiden EL, Wolynes PG, Onuchic JN (2016) Transferable model for chromosome architecture. Proc Natil Acad Sci 113(43):12168–12173. https://doi.org/10.1073/pnas.1613607113

  17. Pierro MD, Cheng RR, Aiden EL, Wolynes PG, Onuchic JN (2017) De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture. Proc Natl Acad Sci U S A 114:12126–12131. https://doi.org/10.1073/pnas.1714980114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng RR, Contessoto VG, Aiden EL, Wolynes PG, Di Pierro M, Onuchic JN (2020) Exploring chromosomal structural heterogeneity across multiple cell lines. Elife 9:e60312. https://doi.org/10.7554/eLife.60312

  19. Contessoto VG, Cheng RR, Hajitaheri A, Dodero-Rojas, E, Mello MF, Lieberman-Aiden E, Wolynes PG, Di Pierro M, Onuchic JN (2021) The Nucleome Data Bank: web-based resources to simulate and analyze the three-dimensional genome. Nucleic Acids Res 49(D1):D172–D182. https://doi.org/10.1093/nar/gkaa818

  20. Junior ABO, Contessoto VG, Mello MF, Onuchic JN (2021) A scalable computational approach for simulating complexes of multiple chromosomes. J Mol Biol 433(6):166700. https://doi.org/10.1016/j.jmb.2020.10.034

  21. Hoencamp C, Dudchenko O, Elbatsh AM, Brahmachari S, Raaijmakers JA, van Schaik T, Cacciatore ÁS, Contessoto VG, van Heesbeen RG, van den Broek B, Mhaskar AN (2021) 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372(6545):984–989. https://doi.org/10.1126/science.abe2218

  22. Chan HS, Dill KA (1996) Comparing folding codes for proteins and polymers. Proteins Struct Funct Genet 24:335–344. https://doi.org/10.1002/(sici)1097-0134(199603)24:3<335::aid-prot6>3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  23. Shakhnovich E, Gutin A (1990) Enumeration of all compact conformations of copolymers with random sequence of links. J Chem Phys 93:5967–5971. https://doi.org/10.1063/1.459480

    Article  CAS  Google Scholar 

  24. Socci ND, Onuchic JN (1994) Folding kinetics of proteinlike heteropolymers. J Chem Phys 101:1519–1528. https://doi.org/10.1063/1.467775

    Article  CAS  Google Scholar 

  25. Whitford PC, Sanbonmatsu KY, Onuchic JN (2012) Biomolecular dynamics: orderdisorder transitions and energy landscapes. Rep Prog Phys 75:076601. https://doi.org/10.1088/0034-4885/75/7/076601

    Article  PubMed  PubMed Central  Google Scholar 

  26. van der Spoel D, Seibert MM (2006) Protein folding kinetics and thermodynamics from atomistic simulations. Phys Rev Lett 96(23):238102. https://doi.org/10.1103/physrevlett.96.238102

    Article  PubMed  Google Scholar 

  27. Wang J (2006) Diffusion and single molecule dynamics on biomolecular interface binding energy landscape. Chem Phys Lett 418:544–548. https://doi.org/10.1016/j.cplett.2005.11.016

    Article  CAS  Google Scholar 

  28. Cieplak M, Hoang TX, Li MS (1999) Scaling of folding properties in simple models of proteins. Phys Rev Lett 83:1684–1687. https://doi.org/10.1103/physrevlett.83.1684

    Article  CAS  Google Scholar 

  29. Leite VBP, Onuchic JN, Stell G, Wang J (2004) Probing the kinetics of single molecule protein folding. Biophys J 87:3633–3641. https://doi.org/10.1529/biophysj.104.046243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Oliveira VM, Caetano DL, Da Silva FB, Mouro PR, de Oliveira Jr AB, De Carvalho SJ, Leite VB (2019) pH and charged mutations modulate cold shock protein folding and stability: A constant pH monte carlo study. J Chem Theory Comput 16(1):765–772

    Google Scholar 

  31. Moritsugu K, Kurkal-Siebert V, Smith JC (2009) REACH coarse-grained Normal mode analysis of protein dimer interaction dynamics. Biophys J 97:1158–1167. https://doi.org/10.1016/j.bpj.2009.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaya H, Chan HS (2002) Towards a consistent modeling of protein thermodynamic and kinetic cooperativity: how applicable is the transition state picture to folding and unfolding? 1 1Edited by C. R Matthews. J Mol Biol 315:899–909. https://doi.org/10.1006/jmbi.2001.5266

    Article  CAS  PubMed  Google Scholar 

  33. Whitford PC, Miyashita O, Levy Y, Onuchic JN (2007) Conformational transitions of adenylate kinase: switching by cracking. J Mol Biol 366:1661–1671. https://doi.org/10.1016/j.jmb.2006.11.085

    Article  CAS  PubMed  Google Scholar 

  34. Contessoto VG, Ramos FC, de Melo RR, de Oliveira VM, Scarpassa JA, de Sousa AS, Zanphorlin LM, Slade GG, Leite VBP, Ruller R (2021) Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases. Biophys J 120(11):2172–2180. https://doi.org/10.1016/j.bpj.2021.03.036

  35. Ngo K, Bruno da Silva F, Leite VB, Contessoto VG, Onuchic JN (2021) Improving the thermostability of xylanase a from bacillus subtilis by combining bioinformatics and electrostatic interactions optimization. J Phys Chem B 125(17):4359–4367. https://doi.org/10.1021/acs.jpcb.1c01253

  36. Bruno da Silva F, Oliveira VM, Sanches MN, Contessoto VG, Leite VBP (2019) Rational design of chymotrypsin inhibitor 2 by optimizing non-native interactions. J Chem Inform Modeling 60(2):982–988. https://doi.org/10.1021/acs.jcim.9b00911

  37. Clementi C, Garci'a AE, Onuchic JN (2003) Interplay among tertiary contacts secondary structure formation and side-chain packing in the protein folding mechanism: all-atom representation study of protein L. J Mol Biol 326:933–954. https://doi.org/10.1016/s0022-2836(02)01379-7

    Article  CAS  PubMed  Google Scholar 

  38. Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: what determines the structural details of the transition state ensemble and en-route intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937–953. https://doi.org/10.1006/jmbi.2000.3693

    Article  CAS  PubMed  Google Scholar 

  39. Whitford PC, Noel JK, Gosavi S, Schug A, Sanbonmatsu KY, Onuchic JN (2009) An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields. Proteins 75:430–441. https://doi.org/10.1002/prot.22253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao B, Yi G, Du F, Chuang Y-C, Vaughan RC, Sankaran B, Kao CC, Li P (2017) Structure and function of the Zika virus full-length NS5 protein. Nat Commun 8:14762. https://doi.org/10.1038/ncomms14762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wishart D (2005) NMR spectroscopy and protein structure determination: applications to drug discovery and development. Curr Pharm Biotechnol 6:105–120. https://doi.org/10.2174/1389201053642367

    Article  CAS  PubMed  Google Scholar 

  42. Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, Green RK, Goodsell DS, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose AS, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook JD, Woo J, Yang H, Young JY, Zardecki C, Berman HM, Burley SK (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45:D271–D281

    Article  CAS  Google Scholar 

  43. Noel JK, Levi M, Raghunathan M, Lammert H, Hayes RL, Onuchic JN, Whitford PC (2016) SMOG 2: a versatile software package for generating structure-based models. PLoS Comput Biol 12:e1004794. https://doi.org/10.1371/journal.pcbi.1004794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noel JK, Whitford PC, Onuchic JN (2012) The shadow map: a general contact definition for capturing the dynamics of biomolecular folding and function. J Phys Chem B 116:8692–8702. https://doi.org/10.1021/jp300852d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clementi C, Jennings PA, Onuchic JN (2001) Prediction of folding mechanism for circular-permuted proteins. J Mol Biol 311:879–890. https://doi.org/10.1006/jmbi.2001.4871

    Article  CAS  PubMed  Google Scholar 

  46. Cho SS, Levy Y, Wolynes PG (2006) P versus Q: structural reaction coordinates capture protein folding on smooth landscapes. Proc Natl Acad Sci 103:586–591. https://doi.org/10.1073/pnas.0509768103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schaeffer RD, Fersht A, Daggett V (2008) Combining experiment and simulation in protein folding: closing the gap for small model systems. Curr Opin Struct Biol 18:4–9. https://doi.org/10.1016/j.sbi.2007.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM, Cingel N, Dothager RS, Seifert S, Thiyagarajan P, Sosnick TR, Hasan MZ, Pande VS, Ruczinski I, Doniach S, Plaxco KW (2004) Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci 101:12491–12496. https://doi.org/10.1073/pnas.0403643101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moglich A, Joder K, Kiefhaber T (2006) End-to-end distance distributions and intrachain diffusion constants in unfolded polypeptide chains indicate intramolecular hydrogen bond formation. Proc Natl Acad Sci U S A 103:12394–12399. https://doi.org/10.1073/pnas.0604748103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Soranno A, Longhi R, Bellini T, Buscaglia M (2009) Kinetics of contact formation and end-to-end distance distributions of swollen disordered peptides. Biophys J 96:1515–1528. https://doi.org/10.1016/j.bpj.2008.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reinartz I, Sinner C, Schug A (2017) Simulation of FRET dyes allows direct comparison against experimental data. Biophys J 112:471a. https://doi.org/10.1016/j.bpj.2016.11.2528

    Article  Google Scholar 

  52. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-e

    Article  CAS  Google Scholar 

  53. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferrenberg AM, Swendsen RH (1988) New Monte Carlo technique for studying phase transitions. Phys Rev Lett 61:2635–2638. https://doi.org/10.1103/physrevlett.61.2635

    Article  CAS  PubMed  Google Scholar 

  55. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021. https://doi.org/10.1002/jcc.540130812

    Article  CAS  Google Scholar 

  56. Lutz B, Sinner C, Heuermann G, Verma A, Schug A (2013) eSBMTools 1.0: enhanced native structure-based modeling tools. Bioinformatics 29:2795–2796. https://doi.org/10.1093/bioinformatics/btt478

    Article  CAS  PubMed  Google Scholar 

  57. Matouschek A, Kellis JT, Serrano L, Fersht AR (1989) Mapping the transition state and pathway of protein folding by protein engineering. Nature 340:122–126. https://doi.org/10.1038/340122a0

    Article  CAS  PubMed  Google Scholar 

  58. Fersht AR, Matouschek A, Serrano L (1992) The folding of an enzyme. J Mol Biol 224:771–782. https://doi.org/10.1016/0022-2836(92)90561-w

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Oliveira RJ, Chu X, Whitford PC, Chahine J, Han W, Wang E, Onuchic JN, Leite VBP (2012) Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding. Proc Natl Acad Sci U S A 109:15763–15768. https://doi.org/10.1073/pnas.1212842109

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chavez LL, Onuchic JN, Clementi C (2004) Quantifying the roughness on the free energy landscape: entropic bottlenecks and protein folding rates. J Am Chem Soc 126:8426–8432

    Article  CAS  Google Scholar 

  61. Bruno da Silva F, Contessoto VG, De Oliveira VM, Clarke J, Leite VB (2018) Non-native cooperative interactions modulate protein folding rates. J Phys Chem B 122(48):10817–10824. https://doi.org/10.1021/acs.jpcb.8b08990

  62. Polotto F, Drigo Filho E, Chahine J, de Oliveira RJ (2018) Supersymmetric quantum mechanics method for the FokkerPlanck equation with applications to protein folding dynamics. Physica A 493:286–300. https://doi.org/10.1016/j.physa.2017.10.021

    Article  CAS  Google Scholar 

  63. Xu W, Lai Z, Oliveira RJ, Leite VBP, Wang J (2012) Configuration-dependent diffusion dynamics of downhill and two-state protein folding. J Phys Chem B 116:5152–5159. https://doi.org/10.1021/jp212132v

    Article  CAS  PubMed  Google Scholar 

  64. Whitford PC, Blanchard SC, Cate JHD, Sanbonmatsu KY (2013) Connecting the kinetics and energy landscape of tRNA translocation on the ribosome. PLoS Comput Biol 9:e1003003. https://doi.org/10.1371/journal.pcbi.1003003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chahine J, Oliveira RJ, Leite VBP, Wang J (2007) Configuration-dependent diffusion can shift the kinetic transition state and barrier height of protein folding. Proc Natl Acad Sci U S A 104:14646–14651. https://doi.org/10.1073/pnas.0606506104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oliveira RJ, Whitford PC, Chahine J, Leite VBP, Wang J (2010) Coordinate and time-dependent diffusion dynamics in protein folding. Methods 52:91–98. https://doi.org/10.1016/j.ymeth.2010.04.016

    Article  CAS  PubMed  Google Scholar 

  67. Best RB, Hummer G (2009) Coordinate-dependent diffusion in protein folding. Proc Natl Acad Sci U S A 107:1088–1093. https://doi.org/10.1073/pnas.0910390107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang S, Onuchic JN, Levine H (2006) Effective stochastic dynamics on a protein folding energy landscape. J Chem Phys 125:054910. https://doi.org/10.1063/1.2229206

    Article  CAS  PubMed  Google Scholar 

  69. Contessoto VG, Oliveira ABD, Chahine J, Oliveira RJD, Pereira Leite VB (2018) Introdução ao problema de enovelamento de proteínas: uma abordagem utilizando modelos computacionais simplificados. Revista Brasileira de Ensino de Física, 40 https://doi.org/10.1590/1806-9126-RBEF-2018-0068

  70. Freitas FC, Lima AN, Contessoto VDG, Whitford PC, Oliveira RJD (2019) Drift-diffusion (DrDiff) framework determines kinetics and thermodynamics of two-state folding trajectory and tunes diffusion models. J Chem Phys 151(11):114106. https://doi.org/10.1063/1.5113499

  71. Azia A, Levy Y (2009) Nonnative electrostatic interactions can modulate protein folding: molecular dynamics with a grain of salt. J Mol Biol 393:527–542. https://doi.org/10.1016/j.jmb.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  72. Contessoto VG, de Oliveira VM, de Carvalho SJ, Oliveira LC, Leite VBP (2016) NTL9 folding at constant pH: the importance of electrostatic interaction and pH dependence. J Chem Theory Comput 12:3270–3277. https://doi.org/10.1021/acs.jctc.6b00399

    Article  CAS  PubMed  Google Scholar 

  73. de Oliveira VM, de Godoi Contessoto V, da Silva FB, Caetano DLZ, de Carvalho SJ, Leite VBP (2018) Effects of pH and salt concentration on stability of a protein G variant using coarse-grained models. Biophys J 114:65–75. https://doi.org/10.1016/j.bpj.2017.11.012

    Article  CAS  Google Scholar 

  74. Ibarra-Molero B, Loladze VV, Makhatadze GI, Sanchez-Ruiz JM (1999) Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability. Biochemistry 38:8138–8149. https://doi.org/10.1021/bi9905819

    Article  CAS  PubMed  Google Scholar 

  75. Loladze VV, Ibarra-Molero B, Sanchez-Ruiz JM, Makhatadze GI (1999) Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface. Biochemistry 38:16419–16423. https://doi.org/10.1021/bi992271w

    Article  CAS  PubMed  Google Scholar 

  76. Gribenko AV, Makhatadze GI (2007) Role of the ChargeCharge interactions in defining stability and Halophilicity of the CspB proteins. J Mol Biol 366:842–856. https://doi.org/10.1016/j.jmb.2006.11.061

    Article  CAS  PubMed  Google Scholar 

  77. Sanchez-Ruiz JM, Makhatadze GI (2001) To charge or not to charge? Trends Biotechnol 19:132–135. https://doi.org/10.1016/s0167-7799(00)01548-1

    Article  CAS  PubMed  Google Scholar 

  78. Gribenko AV, Patel MM, Liu J, McCallum SA, Wang C, Makhatadze GI (2009) Rational stabilization of enzymes by computational redesign of surface chargecharge interactions. Proc Natl Acad Sci U S A 106:2601–2606. https://doi.org/10.1073/pnas.0808220106

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gopi S, Devanshu D, Krishna P, Naganathan AN (2017) pStab: prediction of stable mutants unfolding curves, stability maps and protein electrostatic frustration. Bioinformatics 34(5):875–877. https://doi.org/10.1093/bioinformatics/btx697

    Article  CAS  PubMed Central  Google Scholar 

  80. Contessoto VG, de Oliveira VM, Fernandes BR, Slade GG, VBP L (2017) TKSA-MC: A Web Server for rational mutation through the optimization of protein charge interactions. Proteins 86(11):1184–1188. https://doi.org/10.1101/221556

    Article  CAS  Google Scholar 

  81. Cho SS, Levy Y, Wolynes PG (2008) Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics. Proc Natl Acad Sci U S A 106:434–439. https://doi.org/10.1073/pnas.0810218105

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chen T, Chan HS (2015) Native contact density and nonnative hydrophobic effects in the folding of bacterial immunity proteins. PLoS Comput Biol 11:e1004260. https://doi.org/10.1371/journal.pcbi.1004260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen T, Song J, Chan HS (2015) Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding. Curr Opin Struct Biol 30:32–42. https://doi.org/10.1016/j.sbi.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  84. Ferreiro DU, Komives EA, Wolynes PG (2018) Frustration function and folding. Curr Opin Struct Biol 48:68–73. https://doi.org/10.1016/j.sbi.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  85. Sutto L, Latzer J, Hegler JA, Ferreiro DU, Wolynes PG (2007) Consequences of localized frustration for the folding mechanism of the IM7 protein. Proc Natl Acad Sci U S A 104:19825–19830. https://doi.org/10.1073/pnas.0709922104

    Article  PubMed  PubMed Central  Google Scholar 

  86. Clementi C, Plotkin SS (2004) The effects of nonnative interactions on protein folding rates: theory and simulation. Protein Sci 13:1750–1766. https://doi.org/10.1110/ps.03580104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Plotkin SS (2001) Speeding protein folding beyond the Gö model: how a little frustration sometimes helps. Proteins Struct Funct Genet 45:337–345. https://doi.org/10.1002/prot.1154

    Article  CAS  PubMed  Google Scholar 

  88. Contessoto VG, Lima DT, Oliveira RJ, Bruni AT, Chahine J, Leite VBP (2013) Analyzing the effect of homogeneous frustration in protein folding. Proteins 81:1727–1737. https://doi.org/10.1002/prot.24309

    Article  CAS  PubMed  Google Scholar 

  89. Mouro PR, de Godoi CV, Chahine J, Junio de Oliveira R, Pereira Leite VB (2016) Quantifying nonnative interactions in the protein-folding free-energy landscape. Biophys J 111:287–293. https://doi.org/10.1016/j.bpj.2016.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tzul FO, Schweiker KL, Makhatadze GI (2015) Modulation of folding energy landscape by chargecharge interactions: linking experiments with computational modeling. Proc Natl Acad Sci U S A 112:E259–E266. https://doi.org/10.1073/pnas.1410424112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oliveira RJ, Whitford PC, Chahine J, Wang J, Onuchic JN, Leite VBP (2010) The origin of nonmonotonic complex behavior and the effects of nonnative interactions on the diffusive properties of protein folding. Biophys J 99:600–608. https://doi.org/10.1016/j.bpj.2010.04.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oliveira LC, Silva RT, Leite VB, Chahine J (2006) Frustration and hydrophobicity interplay in protein folding and protein evolution. J Chem Phys 125:084904

    Article  Google Scholar 

  93. Ferreiro DU, Hegler JA, Komives EA, Wolynes PG (2007) Localizing frustration in native proteins and protein assemblies. Proc Natl Acad Sci U S A 104:19819–19824. https://doi.org/10.1073/pnas.0709915104

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gosavi S, Chavez LL, Jennings PA, Onuchic JN (2006) Topological frustration and the folding of interleukin-1β. J Mol Biol 357:986–996. https://doi.org/10.1016/j.jmb.2005.11.074

    Article  CAS  PubMed  Google Scholar 

  95. Jenik M, Parra RG, Radusky LG, Turjanski A, Wolynes PG, Ferreiro DU (2012) Protein frustratometer: a tool to localize energetic frustration in protein molecules. Nucleic Acids Res 40:W348–W351. https://doi.org/10.1093/nar/gks447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Parra RG, Schafer NP, Radusky LG, Tsai M-Y, Guzovsky AB, Wolynes PG, Ferreiro DU (2016) Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules now with electrostatics. Nucleic Acids Res 44:W356–W360. https://doi.org/10.1093/nar/gkw304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

VGC was funded by Grant 2016/13998-8 and 2017/09662-7, FAPESP (São Paulo Research Foundation and Higher Education Personnel) and CAPES and (Higher Education Personnel Improvement Coordination) and also acknowledges NSF (National Science Foundation) Grants PHY-2019745 and CHE-1614101. VMO was supported by the CNPq (National Council for Scientific and Technological Development) Grant Process No. 141985/2013-5, and FAPESP 2018/11614-3. VBPL was supported by the CNPq and FAPESP Grant 2014/06862-7, 2016/19766-1, and 2019/22540-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor B. P. Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Contessoto, V.G., de Oliveira, V.M., Leite, V.B.P. (2022). Coarse-Grained Simulations of Protein Folding: Bridging Theory and Experiments. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics