Skip to main content

Proteomic Tools for the Analysis of Cytoskeleton Proteins

  • Protocol
  • First Online:
Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2364))

Abstract

Proteomic analyses have become an essential part of the toolkit of the molecular biologist, given the widespread availability of genomic data and open source or freely accessible bioinformatics software. Tools are available for detecting homologous sequences, recognizing functional domains, and modeling the three-dimensional structure for any given protein sequence, as well as for predicting interactions with other proteins or macromolecules. Although a wealth of structural and functional information is available for many cytoskeletal proteins, with representatives spanning all of the major subfamilies, the majority of cytoskeletal proteins remain partially or totally uncharacterized. Moreover, bioinformatics tools provide a means for studying the effects of synthetic mutations or naturally occurring variants of these cytoskeletal proteins. This chapter discusses various freely available proteomic analysis tools, with a focus on in silico prediction of protein structure and function. The selected tools are notable for providing an easily accessible interface for the novice while retaining advanced functionality for more experienced computational biologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  2. The PyMOL Molecular Graphics System, Version 2.4, Schrödinger, LLC

    Google Scholar 

  3. Webb B, Sali A (2016) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics 54:5.6.1–5.6.37

    Article  Google Scholar 

  4. Tateno Y et al (2002) DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Res 30(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kulikova T et al (2007) EMBL nucleotide sequence database in 2006. Nucleic Acids Res 35(Database issue):D16–D20

    Article  CAS  PubMed  Google Scholar 

  6. Benson DA et al (2014) GenBank. Nucleic Acids Res 41:D36

    Article  CAS  Google Scholar 

  7. UniProt C (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42(Database issue):D191–D198

    Google Scholar 

  8. MacDougall A et al (2020) UniRule: a unified rule resource for automatic annotation in the UniProt Knowledgebase. Bioinformatics 36(17):4643–4648. https://doi.org/10.1093/bioinformatics/btaa485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  10. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(Web Server issue):W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  13. Di Tommaso P et al (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39(Web Server issue):W13–W17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Katoh K et al (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Do CB et al (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15(2):330–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(W1):W320–W324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiech EM, Cheng HP, Singh SM (2015) Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis. Protein Sci 24(3):319–327

    Article  CAS  PubMed  Google Scholar 

  19. Mitchell AL et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360

    Article  CAS  PubMed  Google Scholar 

  20. de Castro E et al (2006) ScanProsite: detection of PROSITE signature matches and ProRule- associated functional and structural residues in proteins. Nucleic Acids Res 34(Web Server issue):W362–W365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jonassen I, Collins JF, Higgins DG (1995) Finding flexible patterns in unaligned protein sequences. Protein Sci 4(8):1587–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hulo N et al (2008) The 20 years of PROSITE. Nucleic Acids Res 36(Database issue):D245–D249

    CAS  PubMed  Google Scholar 

  23. Wenzhong L et al (2015) IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31(20):3359–3361

    Article  CAS  Google Scholar 

  24. Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230

    Article  CAS  PubMed  Google Scholar 

  25. Marchler-Bauer A et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39(D):225–229

    Article  CAS  Google Scholar 

  26. Schultz J et al (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28(1):231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biegert A, Soding J (2008) De novo identification of highly diverged protein repeats by probabilistic consistency. Bioinformatics 24(6):807–814

    Article  CAS  PubMed  Google Scholar 

  28. George RA, Heringa J (2000) The REPRO server: finding protein internal sequence repeats through the Web. Trends Biochem Sci 25(10):515–517

    Article  CAS  PubMed  Google Scholar 

  29. Buchan DW et al (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41(Web Server issue):W349–W357

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang Z et al (2011) Protein 8-class secondary structure prediction using conditional neural fields. Proteomics 11(19):3786–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan R, Xu D, Yang J, Walker S, Zhang Y (2013) A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Report 3:2619

    Article  Google Scholar 

  32. Pollastri G et al (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235

    Article  CAS  PubMed  Google Scholar 

  33. Drozdetskiy A et al (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 4(W1):W389–W394

    Article  CAS  Google Scholar 

  34. Romero O, Dunker K (1997) Sequence data analysis for long disordered regions prediction in the Calcineurin Family. Genome Inform Ser Workshop Genome Inform 8:110–124

    CAS  PubMed  Google Scholar 

  35. Ward JJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  36. Mizianty MJ et al (2013) MFDp2-accurate predictor of disorder in proteins by fusion of disorder probabilities, content and profiles. Intrinsically Disordered Proteins 1(1):e24428

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ishida T, Kinoshita K (2007) PrDOS:prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Web Server issue):W460–W464

    Article  PubMed  PubMed Central  Google Scholar 

  38. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol 15(3):285–289

    Article  CAS  PubMed  Google Scholar 

  40. John B, Sali A (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res 31(14):3982–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernandez-Fuentes N et al (2007) Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments. Bioinformatics 23(19):2558–2565

    Article  CAS  PubMed  Google Scholar 

  42. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  CAS  Google Scholar 

  44. Dong X, Yang Z (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534

    Article  CAS  Google Scholar 

  45. Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77(4):778–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhattacharya D et al (2016) 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 44(W1):W406–W409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shuid AN, Kempster R, McGuffin LJ (2017) ReFOLD: a server for the refinement of 3D models of proteins guided by accurate quality estimates. Nucleic Acids Res 45:W422–W428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhattacharya D (2019) refineD: improved protein structure refinement using machine learning based restrained relaxation. Bioinformatics 35:3320–3328

    Article  CAS  PubMed  Google Scholar 

  49. Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profi les. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  50. Olechnovič K, Venclovas Č (2017) VoroMQA: assessment of protein structure quality using interatomic contact areas. Proteins 85(6):1131–1145

    Article  PubMed  CAS  Google Scholar 

  51. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  52. Uziela K et al (2017) ProQ3D: Improved model quality assessments using Deep Learning. Bioinformatics 33(10):1578–1580

    CAS  PubMed  Google Scholar 

  53. Hermjakob H et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jensen LJ et al (2009) STRING8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416

    Article  CAS  PubMed  Google Scholar 

  55. Oughtred R et al (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47(D1):D529–D541

    Article  CAS  PubMed  Google Scholar 

  56. Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16:2785–2791

    Article  CAS  Google Scholar 

  57. Zhang N et al (2006) Enriching screening libraries with bioactive fragment space. Bioorg Med Chem 26(15):3594–3597

    Article  CAS  Google Scholar 

  58. Vajda S et al (2017) New additions to the ClusPro server motivated by CAPRI. Proteins 85(3):435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Laskowski RA et al (2018) PDBsum: structural summaries of PDB entries. Protein 27:129–134

    Article  CAS  Google Scholar 

  60. O'Leary NA et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–D745

    Article  CAS  PubMed  Google Scholar 

  61. Goodsell DS et al (2020) RCSB Protein Data Bank: enabling biomedical research and drug discovery. Protein Sci 29:52–65

    Article  CAS  PubMed  Google Scholar 

  62. Lane L et al (2012) neXtProt: a knowledge platform for human proteins. Nucleic Acids Res 40(Database issue):D76–D83

    Article  CAS  PubMed  Google Scholar 

  63. Barker WC et al (2001) Protein Information Resource: a community resource for expert annotation of protein data. Nucleic Acids Res 29(1):29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Remmert M et al (2012) HHblits: lightningfast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9(2):173–175

    Article  CAS  Google Scholar 

  65. Madeira F et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47(W1):W636–W641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bawono P, Heringa J (2014) PRALINE: a versatile multiple sequence alignment toolkit. Methods Mol Biol 1079:245–262

    Article  CAS  PubMed  Google Scholar 

  67. Sadreyev RI et al (2009) COMPASS server for homology detection: improved statistical accuracy, speed and functionality. Nucleic Acids Res 37(Web Server issue):W90–W94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pei J, Grishin NV (2014) PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol Biol 1079:263–271

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chikkagoudar S, Roshan U, Livesay D (2007) eProbalign: generation and manipulation of multiple sequence alignments using partition function posterior probabilities. Nucleic Acids Res 35(Web Server issue):W675–W677

    Article  PubMed  PubMed Central  Google Scholar 

  70. Klausen MS et al (2019) NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins 87:520–527

    Article  CAS  PubMed  Google Scholar 

  71. Yachdav G et al (2014) PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42(Web Server issue):W337–W343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21(8):1719–1720

    Article  CAS  PubMed  Google Scholar 

  73. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    CAS  PubMed  Google Scholar 

  74. Lin K et al (2005) A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21:152–159

    Article  CAS  PubMed  Google Scholar 

  75. Adamczak A, Porollo A, Meller J (2004) Accurate prediction of solvent accessibility using neural networks based regression. Proteins 56:753–767

    Article  CAS  PubMed  Google Scholar 

  76. Yang J et al (2020) Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci 117(3):1496–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu D, Zhang Y (2013) Toward optimal fragment generations for ab initio protein structure assembly. Proteins 81:229–239

    Article  CAS  PubMed  Google Scholar 

  78. Ma J et al (2013) Protein threading using context-specific alignment potential. Bioinformatics 29(13):i257–i265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu S, Zhang Y (2007) LOMETS: a local metathreading-server for protein structure prediction. Nucleic Acids Res 35(10):3375–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bennett-Lovsey RM et al (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70(3):611–625

    Article  CAS  PubMed  Google Scholar 

  81. Lobley A, Sadowski MI, Jones DT (2009) pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25(14):1761–1767

    Article  CAS  PubMed  Google Scholar 

  82. Waterhouse A et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang Y et al (2011) Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics 27(15):2076–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Combet C et al (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18:213–214

    Article  CAS  PubMed  Google Scholar 

  85. McGuffin LJ et al (2019) IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic Acids Res 47:W408–W413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bates PA et al (2001) Enhancement of protein modelling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins (Suppl 5):39–46

    Google Scholar 

  87. Wallner B et al (2003) Automatic consensus based fold recognition using Pcons, ProQ and Pmodeller. Proteins (Suppl 6):534–541

    Google Scholar 

  88. Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12(5):1073–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McGuffin LJ, Buenavista MT, Roche DB (2013) The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res 41(Web Server issue):W368–W372

    Article  PubMed  PubMed Central  Google Scholar 

  90. Benkert P, Kunzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37(Web Server issue):W510–W514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57(4):702–710

    Article  CAS  PubMed  Google Scholar 

  92. Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66(4):778–795

    Article  CAS  PubMed  Google Scholar 

  93. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Williams CJ et al (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315

    Article  CAS  PubMed  Google Scholar 

  95. Bhattacharya D, Cheng J (unpublished) REFINEpro: a conformation ensemble approach for protein structure refinement. http://sysbio.rnet.missouri.edu/REFINEpro/faq.html

  96. Waterhouse AM et al (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stivala A et al (2011) Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27(23):3315–3316

    Article  CAS  PubMed  Google Scholar 

  98. Crooks GE et al (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Linding R et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  CAS  PubMed  Google Scholar 

  100. Kozlowski LP, Bujnicki JM (2012) MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinformatics 13:111

    Article  PubMed  PubMed Central  Google Scholar 

  101. Walsh AJM, Martin T, Di Domenico T, Tosatto SCE (2012) Espritz: accurate and fast prediction of protein disorder. Bioinformatics 28(4):503–509

    Article  CAS  PubMed  Google Scholar 

  102. Warde-Farley D et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue):W214–W220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39(Web Server issue):W270–W277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Van Zundert GCP et al (2016) The HADDOCK2.2 webserver: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725

    Article  PubMed  CAS  Google Scholar 

  105. Schneidman-Duhovny D et al (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Humphrey W et al (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaneen Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barreto, C., Silva, A., Wiech, E., Lopez, A., San, A., Singh, S. (2022). Proteomic Tools for the Analysis of Cytoskeleton Proteins. In: Gavin, R.H. (eds) Cytoskeleton . Methods in Molecular Biology, vol 2364. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1661-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1661-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1660-4

  • Online ISBN: 978-1-0716-1661-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics