Skip to main content

Using Open Chromatin Enrichment and Network Hi-C (OCEAN-C) to Identify Open Chromatin Interactions

  • Protocol
  • First Online:
Enhancers and Promoters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2351))

Abstract

The open chromatin enrichment and network Hi-C (OCEAN-C) was developed not only for identifying large-scale chromatin structures, including topologically associated domains (TADs) and A/B compartments, but also for globally mapping hubs of open chromatin interactions (HOCIs) and their interaction networks independent of antibody and bait-sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898. https://doi.org/10.1016/j.cell.2008.02.022

    Article  CAS  PubMed  Google Scholar 

  2. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82. https://doi.org/10.1038/nature11232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132(2):311–322. https://doi.org/10.1016/j.cell.2007.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong S, Zhang Z, Landt S, Raha D, Euskirchen G, Wei CL, Ge W, Wang H, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, Fullwood MJ, Cheung E, Liu E, Sung WK, Snyder M, Ruan Y (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148(1-2):84–98. https://doi.org/10.1016/j.cell.2011.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang HY (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13:919–922. https://doi.org/10.1038/nmeth.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P, Mikhaleva EA, Penin AA, Logacheva MD, Imakaev MV, Chertovich A, Gelfand MS, Shevelyov YY, Razin SV (2016) Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res 26(1):70–84. https://doi.org/10.1101/gr.196006.115

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marchal C, Sima J, Gilbert DM (2019) Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 20(12):721–737. https://doi.org/10.1038/s41580-019-0162-y

    Article  CAS  PubMed  Google Scholar 

  8. Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010(2):pdb prot5384. https://doi.org/10.1101/pdb.prot5384

    Article  PubMed  PubMed Central  Google Scholar 

  9. Simon JM, Giresi PG, Davis IJ, Lieb JD (2012) Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 7(2):256–267. https://doi.org/10.1038/nprot.2011.444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, Snyder M (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831. https://doi.org/10.1101/gr.136184.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, Szalaj P, Trzaskoma P, Magalska A, Wlodarczyk J, Ruszczycki B, Michalski P, Piecuch E, Wang P, Wang D, Tian SZ, Penrad-Mobayed M, Sachs LM, Ruan X, Wei CL, Liu ET, Wilczynski GM, Plewczynski D, Li G, Ruan Y (2015) CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163(7):1611–1627. https://doi.org/10.1016/j.cell.2015.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fukaya T, Lim B, Levine M (2016) Enhancer control of transcriptional bursting. Cell 166:358. https://doi.org/10.1016/j.cell.2016.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng MZ, Tian SZ, Capurso D, Kim M, Maurya R, Lee B, Piecuch E, Gong L, Zhu JJ, Li ZH, Wong CH, Ngan CY, Wang P, Ruan XA, Wei CL, Ruan YJ (2019) Multiplex chromatin interactions with single-molecule precision. Nature 566(7745):558. https://doi.org/10.1038/s41586-019-0949-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fullwood MJ, Wei CL, Liu ET, Ruan Y (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19(4):521–532. https://doi.org/10.1101/gr.074906.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang R, Yu M, Li G, Chee S, Liu T, Schmitt AD, Ren B (2016) Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26(12):1345–1348. https://doi.org/10.1038/cr.2016.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li T, Jia L, Cao Y, Chen Q, Li C (2018) OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biol 19(1):54. https://doi.org/10.1186/s13059-018-1430-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, Heard E, Dekker J, Barillot E (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259. https://doi.org/10.1186/s13059-015-0831-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31871266). Part of the data analysis was performed on the High Performance Computing Platform of the Center for Life Sciences, Peking University. We thank Zhihua Zhang for providing the GM12878 cell line, and Yong Cao for performing the experiments. We want to thank Qing Chen, Yujie Sun, Xiong Ji, Yong Zhang, Zhihua Zhang, and Yixin Yao for critical comments on this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Li or Tingting Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jia, L., Li, C., Li, T. (2021). Using Open Chromatin Enrichment and Network Hi-C (OCEAN-C) to Identify Open Chromatin Interactions. In: Borggrefe, T., Giaimo, B.D. (eds) Enhancers and Promoters. Methods in Molecular Biology, vol 2351. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1597-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1597-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1596-6

  • Online ISBN: 978-1-0716-1597-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics