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1 Introduction

The life cycle of multicellular organisms requires the coordinated
control of transcriptional processes across multiple tissues and devel-
opmental stages. Regulation of gene expression generally involves
two different types of cis-acting elements: the promoter, a genomic
region defining the initiation of transcription, and more distal regu-
latory elements called enhancers.While promoters provide the essen-
tial sites of transcriptional initiation of RNAs, they are frequently not
sufficient to direct appropriate developmental and signal-dependent
levels of gene expression [1, 2]. This additional information is
provided by enhancers, short regions of DNA that, when bound by
transcription factors (TFs), enhance RNA expression from target
promoters. Enhancers can reside hundreds of thousands of base
pairs (bp) away from their target gene, are typically well-conserved
across genomes and their function is generally considered to depend
on three-dimensional enhancer–promoter interactions [3].

Active enhancers are characterized by bidirectional transcrip-
tion, which results in the production of enhancer RNAs (eRNAs)
believed to facilitate long-range enhancer–promoter looping [4].
Cap analysis of gene expression (CAGE) technology captures the
50-end of transcripts and, therefore, allows the identification of
transcription start sites (TSSs) of active regulatory genomic ele-
ments (Fig. 1a, [5] and Chapter 4). Indeed, CAGE has been
employed as an orthogonal approach to define active enhancers in
multiple datasets and cell types [1].
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In recent years, the development of high-throughput molecu-
lar methods has allowed the study of the three-dimensional organi-
zation of the genome of eukaryotic cells [6]. Chromatin
conformation technologies determine the proximity between loci
by measuring their contact frequency and comparing it with other
genomic locations in an interaction matrix. These approaches have
led to the identification of the regulatory activity of enhancers and
their impact on the expression of target genes. However, several
active enhancers do not exhibit significantly higher contact fre-
quencies with target promoters than with surrounding chromatin
[7]. Also, the functional impact of the physical proximity of two
genomic regions on the regulation of gene expression is not
completely understood.

Recently, we have developed RNAAndDNA Interacting Com-
plexes Ligated and sequenced (RADICL-Seq), a novel technology
to identify genome-wide RNA–chromatin interactions (Fig. 1b and
[8]). RADICL-Seq employs mild fixation and a biotinylated bridge
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Fig. 1 CAGE and RADICL-seq technologies. (a) Schematic overview of CAGE technology that identifies the 50

end of transcripts (see ref. 5 for further details). (b) Schematic overview of RADICL-Seq technology aimed at
capturing proximal RNA–chromatin interactions in a genome-wide manner (see ref. 8 for further details)
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adapter to capture RNA and DNA molecules located in close
proximity while preserving the nuclear structure [8]. Compared
with existing methods, RADICL-Seq improves genomic coverage
and unique mapping rate efficiency, thereby increasing the detec-
tion power for several transcripts including long non-coding RNAs
and intronic RNAs. By employing this technology, we have mapped
the genomic occupancy of multiple RNA classes in mouse embry-
onic stem cells (mESCs) and oligodendrocyte progenitor cells
(mOPCs), identifying general and cell type-specific interaction
patterns [8].

As the enhancer–promoter looping is believed to drive tran-
scriptional activation, the spatial proximity of the nascent RNAwith
the enhancer region has the potential to be captured by RADICL-
Seq. Detection of such RNA–chromatin interactions has the advan-
tage to include an additional layer of functionality for the observed
physical proximity that is not possible with chromatin conforma-
tion technologies.

Here we combine publicly available CAGE and RADICL-Seq
data to identify the gene targets for thousands of enhancer ele-
ments. We provide a detailed computational workflow to first call
the enhancers using CAGE data and subsequently assign their
target genes by leveraging RADICL-Seq data.

2 Materials

The original manuscript describing the RADICL-Seq technology
can be found at https://www.nature.com/articles/s41467-020-
14337-6. The RADICL-Seq significant pair data and the CAGE
expression data can be downloaded from GEO (https://www.ncbi.
nlm.nih.gov/geo/), under the series GSE132190. All analysis was
performed on an Intel quad core CPU machine with 32 GB of
memory.

3 Methods

1. All the computations are done in R [9]. The following packages
will be used: GenomicFeatures [10], InteractionSet [11],
CAGEfightR [12], and tidyverse [13]. For genome annota-
tion, mm10 and Gencode vM14 will be used, in order to be
consistent with the original manuscript for the datasets used.

2. For the RADICL-Seq significant pair tables, we subset them on
the following columns for further analysis:
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Column Data

1 Chromosome of origin for the RNA

2 Midpoint location for the RNA read

6 Sense of transcription (� refers to negative strand. + is positive
strand).

7 Ensembl ID of the RNA

8 RNA class

10 RNA feature

11 Chromosome for interacting DNA read

12 Midpoint location for the DNA read

14 DNA identifier (chromosome_bin; genome has been divided in
25-kb bins)

16 Dataset

17 p-Value before correction

18 p-Value after correction

3. We convert the subsetted data tables into GInteractions
objects, after extending each DNA and RNA midpoint posi-
tions by 1 kb on either side. In effect, we will be comparing
2 kb regions for the rest of the analysis when using RADICL-
Seq significant pairs. After the conversion, the first anchor of
the resulting GInteractions object would be the RNA hit
regions, and the second anchor would be the DNA regions.

For each data table, the conversion can be performed by:

radicl_set <- map(radicl, function(tab) {

rna <- GRanges(seqnames=tab$chrom.R,

ranges=IRanges(start=tab$pos.R - flank,

end=tab$pos.R + flank),

strand=tab$strand.R,

seqinfo=genomeInfo) %>% trim()

dna <- GRanges(seqnames=tab$chrom.D,

ranges=IRanges(start=tab$pos.D - flank,

end=tab$pos.D+flank),

seqinfo=genomeInfo) %>% trim()

interaction <- GInteractions(rna, dna)

mcols(interaction) <- tab

interaction

})

where “radicl” is the list object containing the significant
pair tables, “flank” is the flanking region to be added (1 kb),
and “genomeInfo” is the Seqinfo object [14] containing the
mm10 chromosome information.

204 Alessandro Bonetti et al.



4. The CAGE data can also be downloaded from GEO, under the
series GSE132191. The data is provided as BED files contain-
ing CAGE transcription start sites (CTSS). CAGEfightR pack-
age is used for de novo promoter and enhancer identification
and quantification. For details on how to process CAGE data
using CAGEfightR, refer to [12].

5. The CTSS BED files are first converted to BigWig files using
rtracklayer package’s import and export functions.

bed <- rtracklayer::import(ctss_file)

bed <- GenomicRanges::GRanges(bed, seqinfo=genomeInfo)

bed_plus <- bed[ bed@strand=="+", ]

bed_minus <- bed[ bed@strand=="-", ]

rtracklayer::export(object=bed_plus, filename, format="-

BigWig" )

6. The converted BigWig files are used to load and quantify CTSS
reads into RangeSummarizedExperiment objects and calculate
tags per million (TPM) values.

CTSSs <- quantifyCTSSs(plusStrand=bw_plus,

minusStrand=bw_minus,

design=sample_info,

genome=genomeInfo) %>%

trim() %>%

subsetBySupport(inputAssay=’counts’, outputColumn=’sup-

port’,

unexpressed=0, minSamples=1) %>%

calcTPM(inputAssay=’counts’, outputAssay=’TPM’) %>%

calcPooled(inputAssay=’TPM’)

where “bw_plus” and “bw_minus” are plus and minus strand
BigWig files, respectively.

7. The quantified CTSSs are now used to detect unidirectional
and bidirectional CTSS clusters, which will be taken as promo-
ters and enhancers, respectively. Unidirectional clusters within
20 bp of one another are merged together. The clusters are
then assigned transcript IDs accordingly. Any bidirectional
clusters that overlap existing promoter annotations within
500 bp up- and downstream, as well as those that are annotated
as promoter/5’ UTR/exons are filtered out. Once the de novo
promoters and enhancers are identified, we quantify them by
summing the number of CTSS reads that overlap those
regions.

uni_TCs <- clusterUnidirectionally(supported_CTSSs,

pooledCutoff=3, mergeDist=20)

%>%
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trim() %>%

assignTxID(txModels=txdb, outputColumn=’txID’) %>%

assignTxType(txModels=txdb, outputColumn=’txType’) %>%

assignTxType(txModels=txdb, outputColumn=’peakTxType’,

swap=’thick’)

bi_TCs <- clusterBidirectionally(CTSSs, balanceThres-

hold=0.9)

bi_TCs <- calcBidirectionality(bi_TCs, samples=CTSSs)

bi_TCs <- assignTxType(bi_TCs, txModels=txdb,

tssUpstream=500, tssDownstream=500,

outputColumn=’txType’)

bi_TCs <- subset(bi_TCs, !txType %in% c(’promoter’,’fi-

veUTR’,’exon’))

# quantify the de novo promoters

TSSs <- quantifyClusters(CTSSs, clusters=uni_TCs,

inputAssay=’counts’) %>%

calcTPM() %>%

calcPooled()

# quantify the de novo enhancers

enhancers <- quantifyClusters(CTSSs, clusters=bi_TCs) %>%

calcTPM() %>%

calcPooled()

where txdb is the TxDb object containing the Gencode vM14
annotations.

8. The identified de novo enhancers are overlapped with the DNA
regions in the RADICL-Seq significant pair sets using the
findOverlaps function in the GenomicRanges package. For
each enhancer overlapping a given RADICL-Seq DNA region,
the corresponding RNA hit regions that pair with these regions
are taken as its interacting regions. We restrict ourselves to
those regions that have CAGE expression support. We also
merge the overlapping DNA regions to avoid double counting
of DNA-enhancer overlaps.

rad_rna <- trim(anchors(radicl_set[[n]])$first)

rad_dna <- trim(anchors(radicl_set[[n]])$second)

# only include those where both RNA and DNA regions have

CTSS support

matching_regs <- mcols(radicl_set[[n]]) %>% as_tibble()

# now filter for enhancer overlap

overlap <- findOverlaps(rad_dna, enhancers)

ind <- unique(queryHits(overlap))

rad_dna <- rad_dna[ind]

rad_rna <- rad_rna[ind]

merged_rad <- GenomicRanges::reduce(rad_dna)

overlap <- findOverlaps(rad_dna, merged_rad)

matching_regs$merged_ind <- subjectHits(overlap)
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9. We can calculate how many enhancers a given RADICL-Seq
DNA region (2 kb) overlaps on average. The results are shown
in Fig. 2.

enh_per_dna <- Reduce(bind_rows,

map(matching_regs, function(regs) {

tab <- mcols(regs)

n <- as_tibble(tab) %>%

select(enhancer, merged_ind) %>%

group_by(merged_ind)

%>% summarise(length(unique(enhancer)))

res <- table(n[,2])

vals <- c(unique(tab$cell_type), as.numeric(res))

names(vals) <- c(’cell’, names(res))

vals

}))

where “matching_regs” is the list of enhancer-overlapping
RADICL-Seq significant pairs for each sample as calculated
from the previous step.
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Fig. 2 Distribution of number of enhancers overlapping one RADICL-Seq DNA region (2 kb window centered on
the midpoint for the DNA region of a given RNA–DNA significant pair). While the number of overlapping
enhancers for a given DNA region can vary, the majority overlap less than five enhancers (mESC mouse
embryonic stem cells, mOPC mouse oligodendrocyte progenitor cells)
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10. To tally the RADICL-Seq RNA hit regions that have CAGE
expression support, we set a filter of at least 1 out of 3 replicates
for each cell type having at least 1 TPM.

exp_enh <- assays(enhancers)$TPM

exp_enh <- rownames(exp_enh)[rowSums(exp_enh > 1) > 1]

exp_rna <- assays(TSSs)$TPM

exp_rna <- rownames(TSSs)[rowSums(exp_rna > 1) > 1]

11. For each overlapping enhancer, we calculate the average num-
ber of interacting genes by counting the number of unique
gene IDs associated with the paired RNA hit regions. The
results are illustrated in Fig. 3.

gene_counts <- mcols(regs) %>% as_tibble() %>%

select(c(enhancer, merged_ind, gene_id.R)) %>%

group_by(enhancer) %>%

summarise_at(vars(merged_ind, gene_id.R),

function(x) {length(unique(x))})
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Fig. 3 Distribution of number of expressed genes linked to a single enhancer. A given gene is considered to be
expressed if a CAGE cluster associated with the gene that has expression value of at least 1 tag per million
(TPM) in at least one replicate sample. We establish the link between a given enhancer and a given gene by
determining whether they overlap any of the RADICL-Seq DNA–RNA significant pairs (mESC mouse embryonic
stem cells, mOPC mouse oligodendrocyte progenitor cells)
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where “regs” is the list of enhancer-overlapping RADICL-
Seq significant pairs for one sample, i.e., a given element of the
“matching_regs” list.

12. With the list of RADICL-Seq DNA regions that overlap
enhancers and their interacting RNA hit regions, we calculate
the distances between the pairs and produce a distance distri-
bution. We repeat the process for the DNA regions that do not
overlap any enhancers, and test whether the two distance dis-
tributions are significantly different using Wilcoxon test.

enhancer_dist_distrib <- bind_rows(

map(matching_regs, function(regs) {

tab1 <- mcols(regs) %>% as_tibble() %>%

select(cell_type, merged_ind, RNA_pos, merged_pos)

%>%

distinct() %>%

mutate(gene_radicl_dist=abs(RNA_pos - merged_pos))

}))

non_enhancer_dist_distrib <- bind_rows(

map(nonenh, function(mcoltab) {

mcoltab %>%

dplyr::select(cell_type, merged_ind, RNA_pos,

merged_pos) %>%

distinct() %>%

mutate(gene_radicl_dist=abs(RNA_pos - merged_pos))

}))

a <- dplyr::filter(enhancer_dist_distrib$gene_radicl_-

dist,

cell_type == ’mESC’)

b <- dplyr::filter(non_enhancer_dist_distrib, cell_type

== ’mESC’)

wilcox.test(a$gene_radicl_dist, b$gene_radicl_dist)
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