Skip to main content

The New Frontier of Three-Dimensional Culture Models to Scale-Up Cancer Research

  • Protocol
  • First Online:
Physical Exercise and Natural and Synthetic Products in Health and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2343))

Abstract

In vitro cancer research models require the utmost accuracy and precision to effectively investigate physiological pathways and mechanisms, as well as test the therapeutic efficacy of anticancer drugs. Although two-dimensional (2D) cell culture models have been the traditional hallmark of cancer research, increasing evidence suggests 2D tumor models cannot accurately recapitulate complex aspects of tumor cells and drug responses. Three-dimensional (3D) cell cultures, however, are more physiologically relevant in oncology as they model the cancer network and microenvironment better, allowing for development and assessment of natural products and other anticancer drugs. The present review outlines unprecedented ways in which multicellular spheroid models, organoid models, hydrogel models, microfluidic devices, microfiber scaffold models, and tissue-engineered scaffold models are used in this research. The future of cancer research lies within 3D cell cultures, and as this approach improves, cancer research will continue to advance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

3DP:

3D printing

AQP5:

Aquaporin 5

BGD:

Bendamustine, gemcitabine, dexamethasone

CPDD:

Cisplatin

CSC:

Cancer stem cells

ECM:

Extracellular matrix

EIT:

Electrical impedance tomography

EMT:

Epithelial to mesenchyme transition

FEM:

Finite element method

fFn:

Fibrillar fibronectin

Fn:

Fibronectin

GelMA:

Gelatin methacryloyl

GSCs:

Glioblastoma stem cells

HCC:

Hepatocellular carcinoma

HTS:

High-throughput screening

HUVECs:

Human umbilical vein endothelial cells

Micro-CT:

X-ray microcomputed tomography

MPM:

Malignant pleural mesothelioma

NAP1:

Nck-associated protein 1

NSCLC:

Non-small-cell lung cancer

OC:

Ovarian cancer

OXY:

Oxyresveratrol

PDAC:

Pancreatic ductal adenocarcinoma

PDGFBB:

Platelet-derived growth factor BB

PEG:

Polyethylene glycol

PEM:

Pemetrexed

PET:

Polyethylene terephthalate

PLA:

Polylactic acid

PLGA:

Poly(lactide-co-glycolide)

PVA:

Poly(vinyl acetate)

SCAPs:

Stem cells from apical papilla

TE:

Tissue engineering

TRPV4:

Transient receptor potential cation channel

References

  1. Cagan R, Meyer P (2017) Rethinking cancer: current challenges and opportunities in cancer research. Dis Model Mech 10(4):349–352

    Article  Google Scholar 

  2. Ferreira LP, Gaspar VM, Mano JF (2018) Design of spherically structured 3D in vitro tumor models—advances and prospects. Acta Biomater 75:11–34

    Article  CAS  Google Scholar 

  3. Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34(8):1427–1441

    Article  Google Scholar 

  4. Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16(3):5517–5527

    Article  CAS  Google Scholar 

  5. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230(1):16–26

    Article  CAS  Google Scholar 

  6. Godugu C, Patel AR, Desai U, Andey T, Sams A, Singh M (2013) AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies. PLoS One 8(1). https://doi.org/10.1371/journal.pone.0053708

  7. Marjanovic ND, Weinberg RA, Chaffer CL (2013) Cell plasticity and heterogeneity in cancer. Clin Chem 59(1):168–179

    Article  CAS  Google Scholar 

  8. Kreso A, O’Brien CA, Van Galen P, Gan OI, Notta F, Brown AM et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548

    Article  CAS  Google Scholar 

  9. Tibbitt MW, Anseth KS (2012) Dynamic microenvironments: the fourth dimension. Sci Transl Med 4(160):160ps24. https://doi.org/10.1126/scitranslmed.3004804

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Peters-Hall JR, Bose S, Pena MT, Rose MC (2011) Human bronchial epithelial cells differentiate to 3D glandular acini on basement membrane matrix. Am J Respir Cell Mol Biol 44(6):914–921

    Article  CAS  Google Scholar 

  11. Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8(10):1940–1949

    Article  CAS  Google Scholar 

  12. Tan LTH, Low LE, Tang SY, Yap WH, Chuah LH, Chan CK et al (2019) A reliable and affordable 3D tumor spheroid model for natural product drug discovery: a case study of curcumin. Prog Drug Discov Biomed Sci 2(1). https://doi.org/10.36877/pddbs.a0000017

  13. Abuelba H, Cotrutz CE, Stoica BA, Stoica L, Olinici D, Petreus T (2015) In vitro evaluation of curcumin effects on breast adenocarcinoma 2D and 3D cell cultures. Romanian J Morphol Embryol 56(1):71–76

    Google Scholar 

  14. Sarisozen C, Abouzeid AH, Torchilin VP (2014) The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors. Eur J Pharm Biopharm 88(2):539–550

    Article  CAS  Google Scholar 

  15. Liang J, Sun XS, Yang Z, Cao S (2017) Anticancer drug camptothecin test in 3D hydrogel networks with HeLa cells. Sci Rep 7(1):1–9

    Article  Google Scholar 

  16. Xiao L, Yu E, Yue H, Li Q (2019) Enhanced liver targeting of camptothecin via conjugation with deoxycholic acid. Molecules 24(6):1179. https://doi.org/10.3390/molecules24061179

    Article  CAS  PubMed Central  Google Scholar 

  17. Anastasov N, Höfig I, Radulović V, Ströbel S, Salomon M, Lichtenberg J et al (2015) A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment. BMC Cancer 15(1):466. https://doi.org/10.1186/s12885-015-1481-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. LaBonia GJ, Lockwood SY, Heller AA, Spence DM, Hummon AB (2016) Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry. Proteomics 16(11-12):1814–1821

    Article  CAS  Google Scholar 

  19. Liu X, Hummon AB (2015) Quantitative determination of irinotecan and the metabolite SN-38 by nanoflow liquid chromatography-tandem mass spectrometry in different regions of multicellular tumor spheroids. J Am Soc Mass Spec 26(4):577–586

    Article  CAS  Google Scholar 

  20. Rimann M, Angres B, Patocchi-Tenzer I, Braum S, Graf-Hausner U (2014) Automation of 3D cell culture using chemically defined hydrogels. J Lab Autom 19(2):191–197

    Article  CAS  Google Scholar 

  21. Serebriiskii I, Castelló-Cros R, Lamb A, Golemis EA, Cukierman E (2008) Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix Biol 27(6):573–585

    Article  CAS  Google Scholar 

  22. Musah-Eroje A, Watson S (2019) Adaptive changes of glioblastoma cells following exposure to hypoxic (1% oxygen) tumour microenvironment. Int J Mol Sci 20(9):2091. https://doi.org/10.3390/ijms20092091

    Article  CAS  PubMed Central  Google Scholar 

  23. Pickup KE, Pardow F, Carbonell-Caballero J, Lioutas A, Villanueva-Cañas JL, Wright RH et al (2019) Expression of oncogenic drivers in 3D cell culture depends on nuclear ATP synthesis by NUDT5. Cancers 11(9):1337. https://doi.org/10.3390/cancers11091337

    Article  CAS  PubMed Central  Google Scholar 

  24. Sunilkumar D, Drishya G, Chandrasekharan A, Shaji SK, Bose C, Jossart J et al (2020) Oxyresveratrol drives caspase-independent apoptosis-like cell death in MDA-MB-231 breast cancer cells through the induction of ROS. Biochem Pharmacol 173:113724. https://doi.org/10.1016/j.bcp.2019.113724

    Article  CAS  PubMed  Google Scholar 

  25. Papazoglou ED, Jagirdar RM, Kouliou OA, Pitaraki E, Hatzoglou C, Gourgoulianis KI et al (2019) In vitro characterization of cisplatin and pemetrexed effects in malignant pleural mesothelioma 3D culture phenotypes. Cancers 11(10):1446. https://doi.org/10.3390/cancers11101446

    Article  CAS  PubMed Central  Google Scholar 

  26. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O (2016) Engineering stem cell organoids. Cell Stem Cell 18(1):25–38

    Article  CAS  Google Scholar 

  27. Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC et al (2016) A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res 76(8):2465–2477

    Article  CAS  Google Scholar 

  28. Bhattacharya S, Calar K, de la Puente P (2020) Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models. J Exp Clin Cancer Res 39(1):75. https://doi.org/10.1186/s13046-020-01583-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dumont S, Jan Z, Heremans R, Van Gorp T, Vergote I, Timmerman D (2019) Organoids of epithelial ovarian cancer as an emerging preclinical in vitro tool: a review. J Ovarian Res 12(1):105. https://doi.org/10.1186/s13048-019-0577-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L et al (2019) An organoid platform for ovarian cancer captures intra-and interpatient heterogeneity. Nat Med 25(5):838–849

    Article  CAS  Google Scholar 

  31. Djomehri SI, Burman B, Gonzalez ME, Takayama S, Kleer CG (2019) A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer. J Cell Commun Signal 13(1):129–143

    Article  Google Scholar 

  32. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6. https://doi.org/10.3389/fphar.2018.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dhaliwal A (2012) Three dimensional cell culture: a review. Mater Methods 2:162. https://doi.org/10.13070/mm.en.2.162

    Article  Google Scholar 

  34. Calitz C, Pavlovic N, Rosenquist J, Zagami C, Samanta A, Heindryckx F (2020) A biomimetic liver model recapitulating bio-physical properties and tumour stroma interactions in hepatocellular carcinoma. bioRxiv. https://doi.org/10.1101/2020.04.30.069823

  35. Bhumiratana S, Bernhard JC, Alfi DM, Yeager K, Eton RE, Bova J et al (2016) Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med 8(343):343ra83. https://doi.org/10.1126/scitranslmed.aad5904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng J, Pan J, Han X, Yu L, Chen J, Zhang W et al (2020) PDGFBB-modified stem cells from apical papilla and thermosensitive hydrogel scaffolds induced bone regeneration. Chem Biol Interact 316:108931. https://doi.org/10.1016/j.cbi.2019.108931

    Article  CAS  PubMed  Google Scholar 

  37. Tang M, Xie Q, Gimple RC, Zhong Z, Tam T, Tian J et al (2020) Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res 30(10):833–853. https://doi.org/10.1038/s41422-020-0338-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abdallah BG, Ros A (2013) Surface coatings for microfluidic-based biomedical devices. In: Li XJ, Zhou Y (eds) Microfluidic devices for biomedical applications. Woodhead Publishing, Cambridge, pp 63–99. ISBN-10: 0857096974

    Chapter  Google Scholar 

  39. Miermont A, Lee SWL, Adriani G, Kamm RD (2019) Quantitative screening of the effects of hyper-osmotic stress on cancer cells cultured in 2- or 3-dimensional settings. Sci Rep 9(1):13782. https://doi.org/10.1038/s41598-019-50198-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qian Z, Fei J, Zong S, Yang K, Li L, Liu R et al (2019) In-situ visualization and SERS monitoring of the interaction between tumor and endothelial cells using 3D microfluidic networks. ACS Sens 5(1):208–216

    Article  Google Scholar 

  41. Kramer B, Haan LD, Vermeer M, Olivier T, Hankemeier T, Vulto P et al (2019) Interstitial flow recapitulates gemcitabine chemoresistance in a 3D microfluidic pancreatic ductal adenocarcinoma model by induction of multidrug resistance proteins. Int J Mol Sci 20(28):4647. https://doi.org/10.3390/ijms20184647

    Article  CAS  PubMed Central  Google Scholar 

  42. Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33. https://doi.org/10.3389/fmolb.2020.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao L, Xu Z, Huang Z, Tang Y, Yang D, Huang J et al (2020) CPI-613 rewires lipid metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling. J Exp Clin Cancer Res 39:1–12

    Article  Google Scholar 

  44. Lang L, Lam T, Chen A, Jensen C, Duncan L, Kong FC et al (2020) Circumventing AKT-associated radioresistance in oral cancer by novel nanoparticle-encapsulated capivasertib. Cell 9(3):533. https://doi.org/10.3390/cells9030533

    Article  CAS  Google Scholar 

  45. Lang L, Shay C, Zhao X, Xiong Y, Wang X, Teng Y (2019) Simultaneously inactivating Src and AKT by saracatinib/capivasertib co-delivery nanoparticles to improve the efficacy of anti-Src therapy in head and neck squamous cell carcinoma. J Hematol Oncol 12(1):132

    Article  CAS  Google Scholar 

  46. Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng 2019:3429527. https://doi.org/10.1155/2019/3429527

    Article  CAS  Google Scholar 

  47. Kim MJ, Chi BH, YooJ J, Ju YM, Whang YM, Chang IH (2019) Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLoS One 14(10):e0223689. https://doi.org/10.1371/journal.pone.0223689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geyik ÖG, Nalbant B, H Husemoglu RB, Zeynep Y, Tarkan Ü, Havıtçıoğlu H (2019) Investigation of surface adhesion of MCF-7 cells in 3D printed PET and PLA tissue Scaffold models. J Med Innovat Technol 1(2):45–50

    Google Scholar 

  49. Ulmer J, Geiger B, Spatz JP (2008) Force-induced fibronectin fibrillogenesis in vitro. Soft Matter 4(10):1998–2007

    Article  CAS  Google Scholar 

  50. Wang JP, Hielscher A (2017) Fibronectin: how its aberrant expression in tumors may improve therapeutic targeting. J Cancer 8(4):674–682

    Article  CAS  Google Scholar 

  51. Jordahl S, Solorio L, Neale DB, McDermott S, Jordahl JH, Fox A et al (2019) Engineered fibrillar fibronectin networks as three-dimensional tissue scaffolds. Adv Mater 31(55):e1904580

    Article  Google Scholar 

  52. Penderecka K, Ibbs M, Kaluzna A, Lewandowska A, Marszalek A, Mackiewicz A et al (2020) Implementation of a dynamic culture condition to the heterotypic 3D breast cancer model. J Biomed Mater Res B Appl Biomater 108(4):1186–1197

    Article  CAS  Google Scholar 

  53. Booij TH, Price LS, Danen EH (2019) 3D cell-based assays for drug screens: challenges in imaging, image analysis, and high-content analysis. SLAS Discov 24(6):615–627. https://doi.org/10.1177/2472555219830087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lei KF, Wu MH, Hsu CW, Chen YD (2014) Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens Bioelectron 51:16–21

    Article  CAS  Google Scholar 

  55. Cushing MC, Anseth KS (2007) Hydrogel cell cultures. Science 316(5828):1133–1134. https://doi.org/10.1126/science.1140171

    Article  CAS  PubMed  Google Scholar 

  56. Sherman H, Gitschier HJ, Rossi AE (2018) A novel three-dimensional immune oncology model for high-throughput testing of tumoricidal activity. Front Immunol 9:857. https://doi.org/10.3389/fimmu.2018.00857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants R01DE028351 and R03DE028387 and CURS Summer Scholars (to Y. Teng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jensen, C., Shay, C., Teng, Y. (2022). The New Frontier of Three-Dimensional Culture Models to Scale-Up Cancer Research. In: Guest, P.C. (eds) Physical Exercise and Natural and Synthetic Products in Health and Disease. Methods in Molecular Biology, vol 2343. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1558-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1558-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1557-7

  • Online ISBN: 978-1-0716-1558-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics