Skip to main content

Differentiation of Cytochrome P450-Mediated from Non-CYP-Mediated Metabolism: Aldehyde Oxidase and Xanthine Oxidoreductase

  • Protocol
  • First Online:
Book cover Cytochrome P450

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Aldehyde oxidase and xanthine oxidoreductase are part of the molybdo-flavo family of enzymes. They have become increasingly relevant in drug discovery as medicinal chemistry strategies evolve to reduce cytochrome P450 (CYP) related drug metabolism. Consequently, there is a need for a differentiation strategy for test compounds to be characterized from those of CYP and molybdenum-containing hydroxylases. Herein, general procedures to identify activity and differentiate the fraction metabolized by aldehyde oxidase and xanthine oxidoreductase from that of the family of CYP enzymes are described. Additionally, identifying structural features that lend themselves to aldehyde oxidase and xanthine oxidoreductase metabolism, tissue fractions appropriate to measure activities of these enzymes, specific cofactors to add or omit, specific inhibitors, kinetic idiosyncrasies, and confirmatory studies are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beedham C (2001) Molybdenum hydroxylases, in enzyme systems that metabolize drugs and other xenobiotics. John Wiley & Sons, Ltd, Chichester, West Sussex, UK, pp 147–187

    Google Scholar 

  2. Kitamura S, Sugihara K, Ohta S (2006) Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab Pharmacokinet 21:83–98

    Article  CAS  Google Scholar 

  3. Garattini E, Fratelli M, Terao M (2008) Mammalian aldehyde oxidase: genetics, evolution and biochemistry. Cell Mol Life Sci 65:1019–1048

    Article  CAS  Google Scholar 

  4. Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran TD (2010) Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem 53:8441–8460

    Article  CAS  Google Scholar 

  5. Garattini E, Terao M (2012) The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 8:487–503

    Article  CAS  Google Scholar 

  6. Battelli MG, Polito L, Bortolotti M, Bolognesi A (2016) Xanthine oxidoreductase in drug metabolism: beyond a role as a detoxifying enzyme. Curr Med Chem 23:4027–4036

    Article  CAS  Google Scholar 

  7. Diamond S, Boer J, Maduskuie TP Jr, Falahatpisheh N, Li Y, Yeleswaram S (2010) Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metab Dispos 38:1277–1285

    Article  CAS  Google Scholar 

  8. Akabane T, Tanaka K, Irie M, Terashita S, Teramura T (2011) Case report of extensive metabolism by aldehyde oxidase in humans: pharmacokinetics and metabolite profile of FK3453 in rats, dogs, and humans. Xenobiotica 41:372–384

    Article  CAS  Google Scholar 

  9. Jensen KG, Jacobsen AM, Bundgaard C, Nilausen DO, Thale Z, Chandresena G, Jørgensen M (2017) Lack of exposure in a first-in-man study due to aldehyde oxidase metabolism: investigated by use of 14C-microdose, humanized mice, monkey pharmacokinetics, and in vitro methods. Drug Metab Dispos 45:68–75

    Article  CAS  Google Scholar 

  10. Pryde DC, Tran TD, Jones P, Duckworth J, Howard M, Gardner I, Hyland R, Webster R, Wenham T, Bagal S, Omoto K, Schneider RP, Lin J (2012) Medicinal chemistry approaches to avoid aldehyde oxidase metabolism. Bioorg Med Chem Lett 22:2856–2860

    Article  CAS  Google Scholar 

  11. Terao M, Romão MJ, Leimkühler S, Bolis M, Fratelli M, Coelho C, Santos-Silva T, Garattini E (2016) Structure and function of mammalian aldehyde oxidases. Arch Toxicol 90:753–780

    Article  CAS  Google Scholar 

  12. Zientek MA, Youdim K (2015) Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos 43:163–181

    Article  Google Scholar 

  13. Barr JT, Jones JP, Joswig-Jones CA, Rock DA (2013) Absolute quantification of aldehyde oxidase protein in human liver using liquid chromatography-tandem mass spectrometry. Mol Pharm 10:3842–3849

    Article  CAS  Google Scholar 

  14. Fu C, Di L, Han X, Soderstrom C, Synder M, Troutman MD, Obach RS, Zhang H (2013) Aldehyde oxidase 1 (AOX1) in human liver cytosols: quantitative characterization of AOX1 expression levels and activity relationship. Drug Metab Dispos 41:1797–1804

    Article  CAS  Google Scholar 

  15. Feng L, Zhao N, Yao X, Sun X, Du L, Diao X, Li S, Li Y (2007) Histidine-tryptophan-ketoglutarate solution vs. University of Wisconsin solution for liver transplantation: a systematic review. Liver Transpl 13:1125–1136

    Article  Google Scholar 

  16. Barr JT, Choughule KV, Nepal S, Wong T, Chaudhry AS, Joswig-Jones CA, Zientek M, Strom SC, Schuetz EG, Thummel KE, Jones JP (2014) Why do most human liver cytosol preparations lack xanthine oxidase activity? Drug Metab Dispos 42:695–699

    Article  Google Scholar 

  17. Helmstetter S, Lyon KC, Yerino P, Hilgedick A, Hatfield NM, Ewy B, Woodworth Z, Stanley F, Buckley DB, Olgilvie BW (2017) The effects of organ preservation solution on aldehyde oxidase and xanthine oxidase activity in pooled human liver S9. ISSX 14th European Meeting

    Google Scholar 

  18. Zientek M, Jiang Y, Youdim K, Obach RS (2010) In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase. Drug Metab Dispos 38:1322–1327

    Article  CAS  Google Scholar 

  19. Hutzler JM, Yang YS, Albaugh D, Fullenwider CL, Schmenk J, Fisher MB (2012) Characterization of aldehyde oxidase enzyme activity in cryopreserved human hepatocytes. Drug Metab Dispos 40:267–275

    Article  CAS  Google Scholar 

  20. Kanika CV, Barnaba C, Joswig-Jones CA, Jones JP (2014) In vitro metabolism of 6-mercaptopurine in human liver: insights into the role of molybdoflavoenzymes aldehyde oxidase, xanthine oxidase, and xanthine dehydrogenase. Drug Metab Dispos 42:1334–1340

    Article  Google Scholar 

  21. Strelevitz TJ, Orozco CC, Obach RS (2012) Hydralazine as a selective probe inactivator of aldehyde oxidase in human hepatocytes: estimation of the contribution of aldehyde oxidase to metabolic clearance. Drug Metab Dispos 40:1441–1448

    Article  CAS  Google Scholar 

  22. Linder CD, Renaud NA, Hutzler MJ (2009) Is 1-aminobenzotriazole an appropriate in vitro tool as a nonspecific cytochrome P450 inactivator? Drug Metab Dispos 37:10–13

    Article  CAS  Google Scholar 

  23. Ortiz de Montellano PR (2018) 1-Aminobenzotriazole: a mechanism-based cytochrome P450 inhibitor and probe of cytochrome P450 biology. Med Chem (Los Angeles) 8:38–65

    Google Scholar 

  24. Dick RA (2018) Refinement of in vitro methods for identification of aldehyde oxidase substrates reveals metabolites of kinase inhibitors. Drug Metab Dispos 46:846–859

    Article  CAS  Google Scholar 

  25. Armina A, Paragas EM, Joswig-Jones CA, Rodgers JT, Jones JP (2019) Time course of aldehyde oxidase and why it is nonlinear. Drug Metab Dispos 47:473–483

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk D. Kozminski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kozminski, K.D., Zientek, M.A. (2021). Differentiation of Cytochrome P450-Mediated from Non-CYP-Mediated Metabolism: Aldehyde Oxidase and Xanthine Oxidoreductase. In: Yan, Z., Caldwell, G.W. (eds) Cytochrome P450. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1542-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1542-3_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1541-6

  • Online ISBN: 978-1-0716-1542-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics