Skip to main content

Application of PALM Superresolution Microscopy to the Analysis of Microtubule-Organizing Centers (MTOCs) in Aspergillus nidulans

  • Protocol
  • First Online:
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2329))

Abstract

Photoactivated localization microscopy (PALM), one of the super resolution microscopy methods improving the resolution limit to 20 nm, allows the detection of single molecules in complex protein structures in living cells. Microtubule-organizing centres (MTOCs) are large, multisubunit protein complexes, required for microtubule polymerization. The prominent MTOC in higher eukaryotes is the centrosome, and its functional ortholog in fungi is the spindle-pole body (SPB). There is ample evidence that besides centrosomes other MTOCs are important in eukaryotic cells. The filamentous ascomycetous fungus Aspergillus nidulans is a model organism, with hyphae consisting of multinucleate compartments separated by septa. In A. nidulans, besides the SPBs, a second type of MTOCs was discovered at septa (called septal MTOCs, sMTOC). All the MTOC components appear as big dots at SPBs and sMTOCs when tagged with a fluorescent protein and observed with conventional fluorescence microscopy due to the diffraction barrier. In this chapter, we describe the application of PALM in quantifying the numbers of individual proteins at both MTOC sites in A. nidulans and provide evidence that the composition of MTOCs is highly dynamic and dramatically changes during the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takeshita N, Manck R, Grün N, de Vega SH, Fischer R (2014) Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Opin Microbiol 20:34–41

    Article  CAS  PubMed  Google Scholar 

  2. Takeshita N (2016) Coordinated process of polarized growth in filamentous fungi. Biosci Biotechnol Biochem 80(9):1693–1699

    Article  CAS  PubMed  Google Scholar 

  3. Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U (2018) Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol Rev 82(2):e00068–e00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fischer R, Zekert N, Takeshita N (2008) Polarized growth in fungi–interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68(4):813–826

    Article  CAS  PubMed  Google Scholar 

  5. Oakley CE, Oakley BR (1989) Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338(6217):662

    Article  CAS  PubMed  Google Scholar 

  6. Morris NR, Enos AP (1992) Mitotic gold in a mold: Aspergillus genetics and the biology of mitosis. Trends Genet 8(1):32–33

    Article  CAS  PubMed  Google Scholar 

  7. Osmani SA, Engle DB, Doonan JH, Morris NR (1988) Spindle formation and chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. Cell 52(2):241–251

    Article  CAS  PubMed  Google Scholar 

  8. Osmani AH, McGuire SL, Osmani SA (1991) Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell 67(2):283–291

    Article  CAS  PubMed  Google Scholar 

  9. Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16(2):918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA, Peñalva MA, Osmani SA, Oakley BR (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19(4):1439–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeshita N, Higashitsuji Y, Konzack S, Fischer R (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19(1):339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Higashitsuji Y, Herrero S, Takeshita N, Fischer R (2009) The cell end marker protein TeaC is involved in growth directionality and septation in Aspergillus nidulans. Eukaryot Cell 8(7):957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaspersen SL, Winey M (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20:1–28

    Article  CAS  PubMed  Google Scholar 

  14. Cavanaugh AM, Jaspersen SL (2017) Big lessons from little yeast: budding and fission yeast centrosome structure, duplication, and function. Annu Rev Genet 51:361–383

    Article  CAS  PubMed  Google Scholar 

  15. Knop M, Schiebel E (1997) Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J 16(23):6985–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu P, Zupa E, Neuner A, Böhler A, Loerke J, Flemming D, Ruppert T, Rudack T, Peter C, Spahn C, Gruss OJ, Pfeffer S, Schiebel E (2020) Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature 578(7795):467–471

    Article  CAS  PubMed  Google Scholar 

  17. Xiong Y, Oakley BR (2009) In vivo analysis of the functions of γ-tubulin-complex proteins. J Cell Sci 122(22):4218–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heitz MJ, Petersen J, Valovin S, Hagan IM (2001) MTOC formation during mitotic exit in fission yeast. J Cell Sci 114(24):4521–4532

    Article  CAS  PubMed  Google Scholar 

  19. Höög JL, Schwartz C, Noon AT, O’Toole ET, Mastronarde DN, McIntosh JR, Antony C (2007) Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev Cell 12(3):349–361

    Article  PubMed  Google Scholar 

  20. Konzack S, Rischitor PE, Enke C, Fischer R (2005) The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16(2):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zekert N, Veith D, Fischer R (2010) Interaction of the Aspergillus nidulans microtubule-organizing center (MTOC) component ApsB with gamma-tubulin and evidence for a role of a subclass of peroxisomes in the formation of septal MTOCs. Eukaryot Cell 9(5):795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao X, Schmid M, Zhang Y, Fukuda S, Takeshita N, Fischer R (2019) The spindle pole body of Aspergillus nidulans is asymmetrical and contains changing numbers of γ-tubulin complexes. J Cell Sci 132(24):jcs234799

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Gao X, Manck R, Schmid M, Osmani AH, Osmani SA, Takeshita N, Fischer R (2017) Microtubule-organizing centers of Aspergillus nidulans are anchored at septa by a disordered protein. Mol Microbiol 106(2):285–303

    Article  CAS  PubMed  Google Scholar 

  24. Samejima I, Lourenço PC, Snaith HA, Sawin KE (2005) Fission yeast mto2p regulates microtubule nucleation by the centrosomin-related protein mto1p. Mol Biol Cell 16(6):3040–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Samejima I, Miller VJ, Rincon SA, Sawin KE (2010) Fission yeast Mto1 regulates diversity of cytoplasmic microtubule organizing centers. Curr Biol 20(21):1959–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Flory MR, Morphew M, Joseph JD, Means AR, Davis TN (2002) Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. Cell Growth Differ 13(2):47–58

    CAS  PubMed  Google Scholar 

  27. Hutchins JR, Toyoda Y, Hegemann B, Poser I, Hériché J-K, Sykora MM, Augsburg M, Hudecz O, Buschhorn BA, Bulkescher J (2010) Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328(5978):593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tovey CA, Tubman CE, Hamrud E, Zhu Z, Dyas AE, Butterfield AN, Fyfe A, Johnson E, Conduit PT (2018) γ-TuRC heterogeneity revealed by analysis of Mozart1. Curr Biol 28(14):2314–2323.e2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GP (2019) Super-resolution microscopy demystified. Nat Cell Biol 21(1):72–84

    Article  CAS  PubMed  Google Scholar 

  30. Sigal YM, Zhou R, Zhuang X (2018) Visualizing and discovering cellular structures with super-resolution microscopy. Science 361(6405):880–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nordzieke S, Zobel T, Fränzel B, Wolters DA, Kück U, Teichert I (2015) A fungal sarcolemmal membrane-associated protein (SLMAP) homolog plays a fundamental role in development and localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. Eukaryot Cell 14(4):345–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dempwolff F, Schmidt FK, Hervás AB, Stroh A, Rösch TC, Riese CN, Dersch S, Heimerl T, Lucena D, Hülsbusch N (2016) Super resolution fluorescence microscopy and tracking of bacterial flotillin (Reggie) paralogs provide evidence for defined-sized protein microdomains within the bacterial membrane but absence of clusters containing detergent-resistant proteins. PLoS Genet 12(6):e1006116

    Article  PubMed  PubMed Central  Google Scholar 

  33. Takeshita N, Diallinas G, Fischer R (2012) The role of flotillin FloA and stomatin StoA in the maintenance of apical sterol-rich membrane domains and polarity in the filamentous fungus Aspergillus nidulans. Mol Microbiol 83(6):1136–1152

    Article  CAS  PubMed  Google Scholar 

  34. Chen F, Tillberg PW, Boyden ES (2012) Expansion microscopy. J Phys Oceanogr 42:1445–1460

    Google Scholar 

  35. Götz R, Panzer S, Trinks N, Eilts J, Wagener J, Turrà D, Di Pietro A, Sauer M, Terpitz U (2020) Expansion microscopy for cell biology analysis in fungi. Front Microbiol 11:574

    Article  PubMed  PubMed Central  Google Scholar 

  36. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  37. Sahl SJ, Moerner W (2013) Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol 23(5):778–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU (2011) From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. J Biophotonics 4(6):377–390

    Article  CAS  PubMed  Google Scholar 

  39. Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N (2015) Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Sci Adv 1(10):e1500947

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou L, Evangelinos M, Wernet V, Eckert AF, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N (2018) Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells. Sci Adv 4(1):e1701798

    Article  PubMed  PubMed Central  Google Scholar 

  41. Takeshita N, Evangelinos M, Zhou L, Serizawa T, Somera-Fajardo RA, Lu L, Takaya N, Nienhaus GU, Fischer R (2017) Pulses of Ca2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci U S A 114(22):5701–5706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takeshita N (2018) Oscillatory fungal cell growth. Fungal Genet Biol 110:10–14

    Article  CAS  PubMed  Google Scholar 

  43. Manck R, Ishitsuka Y, Herrero S, Takeshita N, Nienhaus GU, Fischer R (2015) Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans. J Cell Sci 128(19):3569–3582

    CAS  PubMed  Google Scholar 

  44. Bergs A, Ishitsuka Y, Evangelinos M, Nienhaus G, Takeshita N (2016) Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans. Front Microbiol 7:682

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our research was in part financed by grants from the German Science Foundation (DFG Fi 459/20-1) and Japan Science and Technology Agency (JST, ERATO JPMJER1502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Takeshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gao, X., Fischer, R., Takeshita, N. (2021). Application of PALM Superresolution Microscopy to the Analysis of Microtubule-Organizing Centers (MTOCs) in Aspergillus nidulans . In: Coutts, A.S., Weston, L. (eds) Cell Cycle Oscillators . Methods in Molecular Biology, vol 2329. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1538-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1538-6_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1537-9

  • Online ISBN: 978-1-0716-1538-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics