Skip to main content

Study of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Abstract

Membrane receptor, for example, G-protein-coupled receptors (GPCRs), operates via coordinated changes between the receptor expression, their modifications, and interactions between each other. Perturbation in specific heteroreceptor complexes and/or their balance/equilibrium with other heteroreceptor complexes and corresponding homoreceptor complexes is considered to have a role in pathogenic mechanisms, including drug addiction, depression, Parkinsons disease, and schizophrenia. To understand the associations of GPCRs and to unravel the global picture of their receptorreceptor interactions in the brain, different experimental detection techniques for receptorreceptor interactions have been established (e.g., co-immunoprecipitation-based approach). However, they have been criticized for not reflecting the cellular situation or the dynamic nature of receptorreceptor interactions. Therefore, the detection and visualization of GPCR homo- and heteroreceptor complexes in the brain remained largely unknown until recent years, when a well-characterized in situ proximity ligation assay (in situ PLA) was adapted to validate the receptor complexes in their native environment. The in situ PLA protocol presented here can be used to visualize GPCR receptorreceptor interactions in cells and tissues in a highly sensitive and specific manner. We have developed a combined method using immunohistochemistry and PLA, particularly aimed to monitor interactions between GPCRs in specific neuronal cell populations. This allows the analysis of homo- and heteroreceptor complexes at a cellular and subcellular level. The method has the advantage that it can be used in clinical specimens, providing localized, quantifiable homo and heteroreceptor complexes detected in single cells. We compare the advantages and limitations of the methods, underlining recent progress and the growing importance of these techniques in basic research. We discuss also their potential as tools for drug development and diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borroto-Escuela DO, Wydra K, Pintsuk J, Narvaez M, Corrales F, Zaniewska M, Agnati LF, Franco R, Tanganelli S, Ferraro L et al (2016) Understanding the functional plasticity in neural networks of the basal ganglia in cocaine use disorder: a role for allosteric receptor-receptor interactions in a2a-d2 heteroreceptor complexes. Neural Plast 2016:4827268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Borroto-Escuela DO, Wydra K, Ferraro L, Rivera A, Filip M, Fuxe K (2015) Role of d2-like heteroreceptor compelxes in the effects of cocaine, morphine and hallucinogens. In: Preedy V (ed) Neurophatology of drug addictions and substance misuse, vol 1. Elsevier, London, pp 93–101

    Google Scholar 

  3. Bjork K, Svenningsson P (2011) Modulation of monoamine receptors by adaptor proteins and lipid rafts: role in some effects of centrally acting drugs and therapeutic agents. Annu Rev Pharmacol Toxicol 51:211–242

    Article  PubMed  CAS  Google Scholar 

  4. Bockaert J, Perroy J, Becamel C, Marin P, Fagni L (2010) Gpcr interacting proteins (gips) in the nervous system: roles in physiology and pathologies. Annu Rev Pharmacol Toxicol 50:89–109

    Article  CAS  PubMed  Google Scholar 

  5. Aarsland D, Pahlhagen S, Ballard CG, Ehrt U, Svenningsson P (2011) Depression in parkinson disease--epidemiology, mechanisms and management. Nat Rev Neurol 8:35–47

    Article  PubMed  CAS  Google Scholar 

  6. Artigas F (2015) Developments in the field of antidepressants, where do we go now? Eur Neuropsychopharmacol 25:657–670

    Article  CAS  PubMed  Google Scholar 

  7. Blier P (2013) Neurotransmitter targeting in the treatment of depression. J Clin Psychiatry 74(Suppl 2):19–24

    Article  CAS  PubMed  Google Scholar 

  8. Borroto-Escuela DO, Fuxe K (2017) Diversity and bias through dopamine d2r heteroreceptor complexes. Curr Opin Pharmacol 32:16–22

    Article  CAS  PubMed  Google Scholar 

  9. Fuxe K, Borroto-Escuela DO (2016) Heteroreceptor complexes and their allosteric receptor-receptor interactions as a novel biological principle for integration of communication in the cns: targets for drug development. Neuropsychopharmacology 41:380–382

    Article  CAS  PubMed  Google Scholar 

  10. Borroto-Escuela DO, Brito I, Di Palma M, Jiménez-Beristain A, Narvaez M, Corrales F, Pita-Rodríguez M, Sartini S, Ambrogini P, Lattanzi D et al (2015) On the role of the balance of gpcr homo/ heteroreceptor complexes in the brain. J Adv Neurosci Res 2:36–44

    Article  Google Scholar 

  11. Borroto-Escuela DO, Narvaez M, Perez-Alea M, Tarakanov AO, Jimenez-Beristain A, Mudo G, Agnati LF, Ciruela F, Belluardo N, Fuxe K (2015) Evidence for the existence of fgfr1-5-ht1a heteroreceptor complexes in the midbrain raphe 5-ht system. Biochem Biophys Res Commun 456:489–493

    Article  CAS  PubMed  Google Scholar 

  12. Fuxe K, Guidolin D, Agnati LF, Borroto-Escuela DO (2015) Dopamine heteroreceptor complexes as therapeutic targets in parkinson’s disease. Expert Opin Ther Targets 19:377–398

    Article  CAS  PubMed  Google Scholar 

  13. Fuxe K, Agnati LF, Borroto-Escuela DO (2014) The impact of receptor-receptor interactions in heteroreceptor complexes on brain plasticity. Expert Rev Neurother 14:719–721

    Article  CAS  PubMed  Google Scholar 

  14. Fuxe K, Borroto-Escuela D, Fisone G, Agnati LF, Tanganelli S (2014) Understanding the role of heteroreceptor complexes in the central nervous system. Curr Protein Pept Sci 15:647

    Article  CAS  PubMed  Google Scholar 

  15. Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF (2014) Receptor-receptor interactions in heteroreceptor complexes: A new principle in biology. Focus on their role in learning and memory. Neurosci Discov:2

    Google Scholar 

  16. Fuxe K, Tarakanov A, Romero Fernandez W, Ferraro L, Tanganelli S, Filip M, Agnati LF, Garriga P, Diaz-Cabiale Z, Borroto-Escuela DO (2014) Diversity and bias through receptor-receptor interactions in gpcr heteroreceptor complexes. Focus on examples from dopamine d2 receptor heteromerization. Front Endocrinol 5:71

    Article  Google Scholar 

  17. Borroto-Escuela DO, Narvaez M, Perez-Alea M, Tarakanov AO, Jimenez-Beristain A, Mudo G, Agnati LF, Ciruela F, Belluardo N, Fuxe K (2014) Evidence for the existence of fgfr1-5-ht1a heteroreceptor complexes in the midbrain raphe 5-ht system. Biochem Biophys Res Commun

    Google Scholar 

  18. Borroto-Escuela DO, Narvaez M, Wydra K, Pintsuk J, Pinton L, Jimenez-Beristain A, Di Palma M, Jastrzebska J, Filip M, Fuxe K (2017) Cocaine self-administration specifically increases a2ar-d2r and d2r-sigma1r heteroreceptor complexes in the rat nucleus accumbens shell. Relevance for cocaine use disorder. Pharmacol Biochem Behav 155:24–31

    Article  CAS  PubMed  Google Scholar 

  19. Pintsuk J, Borroto-Escuela DO, Lai TK, Liu F, Fuxe K (2016) Alterations in ventral and dorsal striatal allosteric a2ar-d2r receptor-receptor interactions after amphetamine challenge: relevance for schizophrenia. Life Sci 167:92–97

    Article  CAS  Google Scholar 

  20. Pintsuk J, Borroto-Escuela DO, Pomierny B, Wydra K, Zaniewska M, Filip M, Fuxe K (2016) Cocaine self-administration differentially affects allosteric a2a-d2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder. Pharmacol Biochem Behav 144:85–91

    Article  CAS  PubMed  Google Scholar 

  21. Narvaez M, Millon C, Borroto-Escuela D, Flores-Burgess A, Santin L, Parrado C, Gago B, Puigcerver A, Fuxe K, Narvaez JA et al (2014) Galanin receptor 2-neuropeptide y y1 receptor interactions in the amygdala lead to increased anxiolytic actions. Brain Struct Funct

    Google Scholar 

  22. Borroto-Escuela DO, Romero-Fernandez W, Narvaez M, Oflijan J, Agnati LF, Fuxe K (2014) Hallucinogenic 5-ht2ar agonists lsd and doi enhance dopamine d2r protomer recognition and signaling of d2-5-ht2a heteroreceptor complexes. Biochem Biophys Res Commun 443:278–284

    Article  CAS  PubMed  Google Scholar 

  23. Borroto-Escuela DO, Narvaez M, Di Palma M, Calvo F, Rodriguez D, Millon C, Carlsson J, Agnati LF, Garriga P, Diaz-Cabiale Z et al (2014) Preferential activation by galanin 1-15 fragment of the galr1 protomer of a galr1-galr2 heteroreceptor complex. Biochem Biophys Res Commun 452:347–353

    Article  CAS  PubMed  Google Scholar 

  24. Millon C, Flores-Burgess A, Narvaez M, Borroto-Escuela DO, Santin L, Parrado C, Narvaez JA, Fuxe K, Diaz-Cabiale Z (2014) A role for galanin n-terminal fragment (1-15) in anxiety- and depression-related behaviours in rats. Int J Neuropsychopharmacol

    Google Scholar 

  25. Borroto-Escuela DO, Romero-Fernandez W, Mudo G, Perez-Alea M, Ciruela F, Tarakanov AO, Narvaez M, Di Liberto V, Agnati LF, Belluardo N et al (2012) Fibroblast growth factor receptor 1–5-hydroxytryptamine 1a heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry 71:84–91

    Article  CAS  PubMed  Google Scholar 

  26. Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Bendor J, Wallach I, Nairn AC, Surmeier DJ, Greengard P (2008) Fgf acts as a co-transmitter through adenosine a(2a) receptor to regulate synaptic plasticity. Nat Neurosci 11:1402–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nai Q, Li S, Wang SH, Liu J, Lee FJ, Frankland PW, Liu F (2009) Uncoupling the d1-n-methyl-d-aspartate (nmda) receptor complex promotes nmda-dependent long-term potentiation and working memory. Biol Psychiatry 67:246–254

    Article  PubMed  CAS  Google Scholar 

  28. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Ciruela F, Agnati LF, Fuxe K (2011) On the existence of a possible a2a-d2-beta-arrestin2 complex: A2a agonist modulation of d2 agonist-induced beta-arrestin2 recruitment. J Mol Biol 406:687–699

    Article  CAS  PubMed  Google Scholar 

  29. Laroche G, Lepine MC, Theriault C, Giguere P, Giguere V, Gallant MA, de Brum-Fernandes A, Parent JL (2005) Oligomerization of the alpha and beta isoforms of the thromboxane a2 receptor: relevance to receptor signaling and endocytosis. Cell Signal 17:1373–1383

    Article  CAS  PubMed  Google Scholar 

  30. Borroto-Escuela DO, Garcia-Negredo G, Garriga P, Fuxe K, Ciruela F (1803) The m(5) muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. Biochim Biophys Acta 2010:813–825

    Google Scholar 

  31. Borroto-Escuela DO, Van Craenenbroeck K, Romero-Fernandez W, Guidolin D, Woods AS, Rivera A, Haegeman G, Agnati LF, Tarakanov AO, Fuxe K (2010) Dopamine d2 and d4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem Biophys Res Commun 404:928–934

    Article  PubMed  CAS  Google Scholar 

  32. Comps-Agrar L, Maurel D, Rondard P, Pin JP, Trinquet E, Prezeau L (2011) Cell-surface protein-protein interaction analysis with time-resolved fret and snap-tag technologies: application to g protein-coupled receptor oligomerization. Methods Mol Biol 756:201–214

    Article  CAS  PubMed  Google Scholar 

  33. Cottet M, Faklaris O, Falco A, Trinquet E, Pin JP, Mouillac B, Durroux T (2013) Fluorescent ligands to investigate gpcr binding properties and oligomerization. Biochem Soc Trans 41:148–153

    Article  CAS  PubMed  Google Scholar 

  34. Cottet M, Faklaris O, Maurel D, Scholler P, Doumazane E, Trinquet E, Pin JP, Durroux T (2012) Bret and time-resolved fret strategy to study gpcr oligomerization: from cell lines toward native tissues. Front Endocrinol 3:92

    Article  Google Scholar 

  35. Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, van Oeffelen WE, Perello M, Giblin L, Dinan TG, Cryan JF (2015) Ghrelin’s orexigenic effect is modulated via a serotonin 2c receptor interaction. ACS Chem Neurosci 6:1186–1197

    Article  CAS  PubMed  Google Scholar 

  36. Borroto-Escuela DO, Flajolet M, Agnati LF, Greengard P, Fuxe K (2013) Bioluminescence resonance energy transfer methods to study g protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes. Methods Cell Biol 117:141–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D, Ciruela F, Agnati LF, Fuxe K (2010) Dopamine d2 and 5-hydroxytryptamine 5-ht((2)a) receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun 401:605–610

    Article  CAS  PubMed  Google Scholar 

  38. Bouvier M, Heveker N, Jockers R, Marullo S, Milligan G (2007) Bret analysis of gpcr oligomerization: newer does not mean better. Nat Methods 4:3–4. author reply 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006

    Article  CAS  PubMed  Google Scholar 

  40. Marullo S, Bouvier M (2007) Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28:362–365

    Article  CAS  PubMed  Google Scholar 

  41. Audet M, Lagace M, Silversides DW, Bouvier M (2010) Protein-protein interactions monitored in cells from transgenic mice using bioluminescence resonance energy transfer. FASEB J 24:2829–2838

    Article  CAS  PubMed  Google Scholar 

  42. Fernandez-Duenas V, Gomez-Soler M, Jacobson KA, Santhosh Kumar T, Fuxe K, Borroto-Escuela DO, Ciruela F (2012) Molecular determinants of a(2a) r-d(2) r allosterism: role of the intracellular loop 3 of the d(2) r. J Neurochem

    Google Scholar 

  43. Herrick-Davis K, Grinde E, Cowan A, Mazurkiewicz JE (2013) Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol 84:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Borroto-Escuela DO, Romero-Fernandez W, Garriga P, Ciruela F, Narvaez M, Tarakanov AO, Palkovits M, Agnati LF, Fuxe K (2013) G protein-coupled receptor heterodimerization in the brain. Methods Enzymol 521:281–294

    Article  CAS  PubMed  Google Scholar 

  45. Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J, Schmauss C, Slattman M, Gullberg M, Javitch JA (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine d2-adenosine a2a receptor complexes in the striatum. Biotechniques 51:111–118

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Romero-Fernandez W, Borroto-Escuela DO, Agnati LF, Fuxe K (2013) Evidence for the existence of dopamine d2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Mol Psychiatry 18:849–850

    Article  CAS  PubMed  Google Scholar 

  47. Borroto-Escuela DO, Li X, Tarakanov AO, Savelli D, Narvaez M, Shumilov K, Andrade-Talavera Y, Jimenez-Beristain A, Pomierny B, Diaz-Cabiale Z et al (2017) Existence of brain 5-ht1a-5-ht2a isoreceptor complexes with antagonistic allosteric receptor-receptor interactions regulating 5-ht1a receptor recognition. ACS Omega 2:4779–4789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borroto-Escuela DO, DuPont CM, Li X, Savelli D, Lattanzi D, Srivastava I, Narvaez M, Di Palma M, Barbieri E, Andrade-Talavera Y et al (2017) Disturbances in the fgfr1-5-ht1a heteroreceptor complexes in the raphe-hippocampal 5-ht system develop in a genetic rat model of depression. Front Cell Neurosci 11:309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Fuxe K, Borroto-Escuela DO (2018) Receptor-receptor interactions in the central nervous system, vol 140. Humana Press, New York, p 346

    Book  Google Scholar 

  50. Borroto-Escuela DO, Tarakanov AO, Fuxe K (2016) Fgfr1-5-ht1a heteroreceptor complexes: implications for understanding and treating major depression. Trends Neurosci 39:5–15

    Article  CAS  PubMed  Google Scholar 

  51. Borroto-Escuela DO, Hagman B, Woolfenden M, Pinton L, Jiménez-Beristain A, Oflijan J, Narvaez M, Di Palma M, Feltmann K, Sartini S et al (2016) In situ proximity ligation assay to study and understand the distribution and balance of gpcr homo- and heteroreceptor complexes in the brain. In: Lujan R, Ciruela F (eds) Receptor and ion channel detection in the brain, vol 110. Springer, Berlin, pp 109–126

    Chapter  Google Scholar 

  52. Borroto-Escuela DO, Wydra K, Filip M, Fuxe K (2018) A2ar-d2r heteroreceptor complexes in cocaine reward and addiction. Trends Pharmacol Sci 39:1008–1020

    Article  CAS  PubMed  Google Scholar 

  53. Borroto-Escuela DO, Wydra K, Li X, Rodriguez D, Carlsson J, Jastrzebska J, Filip M, Fuxe K (2018) Disruption of a2ar-d2r heteroreceptor complexes after a2ar transmembrane 5 peptide administration enhances cocaine self-administration in rats. Mol Neurobiol 55:7038–7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Millon C, Flores-Burgess A, Narvaez M, Borroto-Escuela DO, Santin L, Gago B, Narvaez JA, Fuxe K, Diaz-Cabiale Z (2016) Galanin (1–15) enhances the antidepressant effects of the 5-ht1a receptor agonist 8-oh-dpat. Involvement of the raphe-hippocampal 5-ht neuron system. Brain Struct Funct 221(9):4491–4504

    Article  CAS  PubMed  Google Scholar 

  55. Tena-Campos M, Ramon E, Borroto-Escuela DO, Fuxe K, Garriga P (1852) The zinc binding receptor gpr39 interacts with 5-ht1a and galr1 to form dynamic heteroreceptor complexes with signaling diversity. Biochim Biophys Acta 2015:2585–2592

    Google Scholar 

  56. Pinton L, Borroto-Escuela DO, Narváez M, Jiménez-Beristain A, Oflijan J, Ferraro L, Agnati LF, Fuxe K (2015) Dopamine d2 receptor dynamic and modulation in the d2r-sigma1r heteroreceptor complexes: role in cocaine actions. In: European neuropsychopharmacology, vol 25. Elsevier, Amsterdam, The Netherlands, pp S609–S610

    Google Scholar 

  57. Borroto-Escuela DO, Perez De La Mora M, Manger P, Narvaez M, Beggiato S, Crespo-Ramirez M, Navarro G, Wydra K, Diaz-Cabiale Z, Rivera A et al (2018) Brain dopamine transmission in health and parkinson’s disease: Modulation of synaptic transmission and plasticity through volume transmission and dopamine heteroreceptors. Front Syn Neurosci 10:20

    Article  CAS  Google Scholar 

  58. Borroto-Escuela DO, Carlsson J, Ambrogini P, Narvaez M, Wydra K, Tarakanov AO, Li X, Millon C, Ferraro L, Cuppini R et al (2017) Understanding the role of gpcr heteroreceptor complexes in modulating the brain networks in health and disease. Front Cell Neurosci 11:37

    PubMed  PubMed Central  Google Scholar 

  59. Borroto-Escuela DO, Pintsuk J, Schafer T, Friedland K, Ferraro L, Tanganelli S, Liu F, Fuxe K (2016) Multiple d2 heteroreceptor complexes: new targets for treatment of schizophrenia. Ther Adva Psychopharmacol 6:77–94

    Article  CAS  Google Scholar 

  60. Navarro G, Borroto-Escuela DO, Fuxe K, Franco R (2016) Purinergic signaling in parkinson’s disease. v. Neuropharmacology 104:161–168

    Article  CAS  PubMed  Google Scholar 

  61. Ferraro L, Beggiato S, Borroto-Escuela DO, Ravani L, O’Connor WT, Tomasini MC, Borelli AC, Agnati LF, Antonelli T, Tanganelli S et al (2014) Neurotensin nts1-dopamine d2 receptor-receptor interactions in putative receptor heteromers: relevance for parkinson’s disease and schizophrenia. Curr Protein Pept Sci 15:681–690

    Article  CAS  PubMed  Google Scholar 

  62. Borroto-Escuela DO, Agnati LF, Fuxe K, Ciruela F (2012) Muscarinic acetylcholine receptor-interacting proteins (machrips): targeting the receptorsome. Curr Drug Targets 13:53–71

    Article  CAS  PubMed  Google Scholar 

  63. Borroto-Escuela DO, Correia PA, Romero-Fernandez W, Narvaez M, Fuxe K, Ciruela F, Garriga P (2011) Muscarinic receptor family interacting proteins: role in receptor function. J Neurosci Methods 195:161–169

    Article  CAS  PubMed  Google Scholar 

  64. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  CAS  PubMed  Google Scholar 

  65. Gullberg M, Fredriksson S, Taussig M, Jarvius J, Gustafsdottir S, Landegren U (2003) A sense of closeness: protein detection by proximity ligation. Curr Opin Biotechnol 14:82–86

    Article  CAS  PubMed  Google Scholar 

  66. Gullberg M, Gustafsdottir SM, Schallmeiner E, Jarvius J, Bjarnegard M, Betsholtz C, Landegren U, Fredriksson S (2004) Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci U S A 101:8420–8424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  CAS  Google Scholar 

  68. Darmanis S, Kahler A, Spangberg L, Kamali-Moghaddam M, Landegren U, Schallmeiner E (2007) Self-assembly of proximity probes for flexible and modular proximity ligation assays. Biotechniques 43:443–444. 446, 448 passim

    Article  CAS  PubMed  Google Scholar 

  69. Soderberg O, Leuchowius KJ, Kamali-Moghaddam M, Jarvius M, Gustafsdottir S, Schallmeiner E, Gullberg M, Jarvius J, Landegren U (2007) Proximity ligation: a specific and versatile tool for the proteomic era. Genet Eng (N Y) 28:85–93

    Article  Google Scholar 

  70. Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227–232

    Article  PubMed  CAS  Google Scholar 

  71. Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, Rimm DL, Rodriguez H, Hiltke T, Snyder M et al (2016) A proposal for validation of antibodies. Nat Methods 13:823–827

    Article  CAS  PubMed  Google Scholar 

  72. Antonelli T, Fuxe K, Agnati L, Mazzoni E, Tanganelli S, Tomasini MC, Ferraro L (2006) Experimental studies and theoretical aspects on a2a/d2 receptor interactions in a model of parkinson’s disease. Relevance for l-dopa induced dyskinesias. J Neurol Sci 248:16–22

    Article  CAS  PubMed  Google Scholar 

  73. Weibrecht I, Leuchowius KJ, Clausson CM, Conze T, Jarvius M, Howell WM, Kamali-Moghaddam M, Soderberg O (2010) Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics 7:401–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Karolinska Institutets Forskningsstiftelser 2020-2021 and Hjärnfonden (FO-2018-286 and FO2019-296) to D.O.B.-E., by the Swedish Medical Research Council (62X-00715-50-3) and Stiftelsen Olle Engkvist Byggmästare to K.F. K.F. and D.O.B.-E., and by Dirección General de Apoyo al Personal Académico (DGAPA), Universidad Nacional Autónoma de México (IN206820) to M.P.M. D.O.B.-E. belongs to Academia de Biólogos Cubanos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dasiel O. Borroto-Escuela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Narváez, M. et al. (2021). Study of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics