Skip to main content

CRISPRi/a Screening with Human iPSCs

  • Protocol
  • First Online:
Pluripotent Stem-Cell Derived Cardiomyocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2320))

Abstract

Identifying causative genes in a given phenotype or disease model is important for biological discovery and drug development. The recent development of the CRISPR/Cas9 system has enabled unbiased and large-scale genetic perturbation screens to identify causative genes by knocking out many genes in parallel and selecting cells with desired phenotype of interest. However, compared to cancer cell lines, human somatic cells including cardiomyocytes (CMs), neuron cells, and endothelial cells are not easy targets of CRISPR screens because CRISPR screens require a large number of isogenic cells to be cultured and thus primary cells from patients are not ideal. The combination of CRISPR screens with induced pluripotent stem cell (iPSC) technology would be a powerful tool to identify causative genes and pathways because iPSCs can be expanded easily and differentiated to any cell type in principle. Here we describe a robust protocol for CRISPR screening using human iPSCs. Because each screening is different and needs to be customized depending on the cell types and phenotypes of interest, we show an example of CRISPR knockdown screening using CRISPRi system to identify essential genes to differentiate iPSCs to CMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12(4):828–863. https://doi.org/10.1038/nprot.2017.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, Lin X, Still C II, Liu H, Zhao D, Wang H, Xie XS, Ding S, Wong WH, Wernig M, Qi LS (2018) CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23(5):758–771.e758. https://doi.org/10.1016/j.stem.2018.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16(5):299–311. https://doi.org/10.1038/nrg3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9(1):1911. https://doi.org/10.1038/s41467-018-04252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933–941. https://doi.org/10.1038/nbt.3659

    Article  CAS  PubMed  Google Scholar 

  6. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17(1):5–15. https://doi.org/10.1038/nrm.2015.2

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160(6):1246–1260. https://doi.org/10.1016/j.cell.2015.02.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, Judge LM, Gordon DE, Eskildsen TV, Villalta JE, Horlbeck MA, Gilbert LA, Krogan NJ, Sheikh SP, Weissman JS, Qi LS, So PL, Conklin BR (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18(4):541–553. https://doi.org/10.1016/j.stem.2016.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, Attenello FJ, Villalta JE, Cho MY, Chen Y, Mandegar MA, Olvera MP, Gilbert LA, Conklin BR, Chang HY, Weissman JS, Lim DA (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355(6320):aah7111. https://doi.org/10.1126/science.aah7111

    Article  CAS  PubMed  Google Scholar 

  10. Chen IY, Matsa E, Wu JC (2016) Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol 13(6):333–349. https://doi.org/10.1038/nrcardio.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130. https://doi.org/10.1038/nrd.2016.245

    Article  CAS  PubMed  Google Scholar 

  12. Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M, Weissman JS (2016) Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. elife 5:e19760. https://doi.org/10.7554/eLife.19760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860. https://doi.org/10.1038/nmeth.2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the American Heart Association 17MERIT33610009, National Institutes of Health (NIH) R01 HL113006, R01 HL123968, R01 HL141851, UH3 TR002588 (JCW), R01 HL 126527 (LSQ), U01 EB021240 (LSQ), and JSPS Overseas Research Fellowship (MN). The CRISPRi iPSC line (CRISPRi Gen2C) was kindly provided by Conklin lab (Gladstone Institute) [8].

Disclosures

JCW is a cofounder of Khloris Biosciences but has no competing interests, as the work presented here is completely independent. LSQ is a cofounder of Refuge Biotechnologies but has no competing interests, as the work presented here is completely independent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nishiga, M., Qi, L.S., Wu, J.C. (2021). CRISPRi/a Screening with Human iPSCs . In: Yoshida, Y. (eds) Pluripotent Stem-Cell Derived Cardiomyocytes. Methods in Molecular Biology, vol 2320. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1484-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1484-6_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1483-9

  • Online ISBN: 978-1-0716-1484-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics