Skip to main content

Culture-Independent Discovery of Viroids by Deep Sequencing and Computational Algorithms

  • Protocol
  • First Online:
Viroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2316))

Abstract

Viroids are single-stranded circular RNA molecules that cause diseases in plants and do not encode any protein. Classical approaches for the identification of new viroids are challenging for many plant pathology laboratories as viroid cDNA synthesis and sequencing require purification and enrichment of the naked viroid RNA by two-dimensional gel electrophoresis. Conventional metagenomic approaches are not effective for viroid discovery because the total number of known viroids is small, and distinct viroids share limited nucleotide sequence similarity. In this chapter, we describe a homology-independent approach for the identification of both known and new viroids in disease samples. It is known that viroid infection of plants triggers production of overlapping viroid-derived small interfering RNAs (siRNAs) targeting the entire genome with high densities and that replication of viroids occurs via a rolling-circle mechanism to yield head-to-tail multiple-repeat replicative intermediates. Our approach involves deep sequencing of either long or small RNAs in a disease sample followed by viroid identification with a unique computational algorithm, progressive filtering of overlapping small RNAs (PFOR). Among the sequenced total small RNAs, PFOR retains viroid-derived siRNAs for viroid genome assembly by progressively eliminating nonoverlapping small RNAs and those that overlap but cannot be assembled into a direct repeat RNA, a unique feature of viroid RNA replication. In contrast, long RNAs sequenced after depletion of ribosomal RNAs are cut into 21-nucleotide virtual overlapping small RNAs with the algorithm SLS (splitting longer read into shorter fragments) before PFOR. We show that new viroids or viroids from the two known families are readily identified and their full-length sequences recovered by PFOR from long or small RNAs sequenced directly from infected plants. We propose that our approach can be used for viroid discovery in both plants and potentially animals since PFOR identifies viroids by searching for circular RNAs or a unique replication intermediate of the viroid genome in a sequence homology-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang YZ, Shi M, Holmes EC (2018) Using metagenomics to characterize an expanding virosphere. Cell 172:1168–1172. https://doi.org/10.1016/j.cell.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  2. Geoghegan JL, Holmes EC (2017) Predicting virus emergence amid evolutionary noise. Open Biol 7:170189. https://doi.org/10.1098/Rsob.170189

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu JG, Holmes EC, Zhang YZ (2016) Redefining the invertebrate RNA virosphere. Nature 540:539. https://doi.org/10.1038/nature20167

    Article  CAS  PubMed  Google Scholar 

  4. Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci U S A 107:1606–1611. https://doi.org/10.1073/pnas.0911353107

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu Q, Wang Y, Cao M, Pantaleo V, Burgyan J, Li WX, Ding SW (2012) Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc Natl Acad Sci U S A 109:3938–3943. https://doi.org/10.1073/pnas.1117815109

    Article  PubMed  PubMed Central  Google Scholar 

  6. Diener TO (2003) Discovering viroids—a personal perspective. Nat Rev Microbiol 1:75–80. https://doi.org/10.1038/nrmicro736

    Article  CAS  PubMed  Google Scholar 

  7. Flores R, Hernandez C, de Alba AEM, Daros JA, Di Serio F (2005) Viroids and viroid-host interactions. Annu Rev Phytopathol 43:117–139. https://doi.org/10.1146/annurev.phyto.43.040204.140243

    Article  CAS  PubMed  Google Scholar 

  8. Owens RA (2008) Identification of viroids by gel electrophoresis. Curr Protoc Microbiol. Chapter 16:Unit 16G 1 1-16G 1 9. https://doi.org/10.1002/9780471729259.mc16g01s10

  9. Ding B (2009) The biology of viroid-host interactions. Annu Rev Phytopathol 47:105–131. https://doi.org/10.1146/annurev-phyto-080508-081927

    Article  CAS  PubMed  Google Scholar 

  10. Hu CC, Hsu YH, Lin NS (2009) Satellite RNAs and satellite viruses of plants. Viruses 1:1325–1350. https://doi.org/10.3390/v1031325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo ZX, Li Y, Ding SW (2019) Small RNA-based antimicrobial immunity. Nat Rev Immunol 19:31–44. https://doi.org/10.1038/s41577-018-0071-x

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Qi S, Tang N, Zhang X, Chen S, Zhu P, Ma L, Cheng J, Xu Y, Lu M, Wang H, Ding SW, Li S, Wu Q (2014) Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathog 10:e1004553. https://doi.org/10.1371/journal.ppat.1004553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alexandrescu A (2001) Modern C++ design: generic programming and design patterns applied. MA. Addison-Wesley Professional, Boston

    Google Scholar 

  14. Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715. https://doi.org/10.1038/nmeth.1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tariq MA, Kim HJ, Jejelowo O, Pourmand N (2011) Whole-transcriptome RNAseq analysis from minute amount of total RNA. Nucleic Acids Res 39:e120. https://doi.org/10.1093/nar/gkr547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu Q, Kim YC, Lu J, Xuan Z, Chen J, Zheng Y, Zhou T, Zhang MQ, Wu CI, Wang SM (2008) Poly A- transcripts expressed in HeLa cells. PLoS One 3:e2803. https://doi.org/10.1371/journal.pone.0002803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63. https://doi.org/10.1093/nar/gkl151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adkar-Purushothama CR, Zhang Z, Li S, Sano T (2015) Analysis and application of viroid-specific small RNAs generated by viroid-inducing RNA silencing. Methods Mol Biol 1236:135–170. https://doi.org/10.1007/978-1-4939-1743-3_12

    Article  CAS  PubMed  Google Scholar 

  19. Aliyari R, Wu Q, Li HW, Wang XH, Li F, Green LD, Han CS, Li WX, Ding SW (2008) Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in drosophila. Cell Host Microbe 4:387–397. https://doi.org/10.1016/j.chom.2008.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vincent HA, Deutscher MP (2006) Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 281:29769–29775. https://doi.org/10.1074/jbc.M606744200

    Article  CAS  PubMed  Google Scholar 

  21. Di Serio F, Gisel A, Navarro B, Delgado S, Martinez de Alba AE, Donvito G, Flores R (2009) Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: implications for their genesis and for pathogenesis. PLoS One 4:e7539. https://doi.org/10.1371/journal.pone.0007539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bolduc F, Hoareau C, St-Pierre P, Perreault JP (2010) In-depth sequencing of the siRNAs associated with peach latent mosaic viroid infection. BMC Mol Biol 11:16. https://doi.org/10.1186/1471-2199-11-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T, Bisztray G, Di Serio F, Burgyan J (2009) Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS One 4:e7686. https://doi.org/10.1371/journal.pone.0007686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Shibuya M, Taneda A, Kurauchi T, Senda M, Owens RA, Sano T (2011) Accumulation of potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology 413:72–83. https://doi.org/10.1016/j.virol.2011.01.021

    Article  CAS  PubMed  Google Scholar 

  26. Korf I, Yandell M, Bedell J (2003) BLAST. O’Reilly & Associates, Sebastopol, CA

    Google Scholar 

  27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  28. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. https://doi.org/10.1093/nar/gkg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flores R, Grubb D, Elleuch A, Nohales MA, Delgado S, Gago S (2011) Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol 8:200–206. https://doi.org/10.4161/rna.8.2.14238

    Article  CAS  PubMed  Google Scholar 

  30. Fadda Z, Daros JA, Fagoaga C, Flores R, Duran-Vila N (2003) Eggplant latent viroid, the candidate type species for a new genus within the family Avsunviroidae (hammerhead viroids). J Virol 77:6528–6532. https://doi.org/10.1128/Jvi.77.11.6528-6532.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Natural Science Foundation of China (32030087 and 31871927) to Q Wu and from the US-Israel Binational Agricultural Research and Development Fund and the Agricultural Experimental Station of the University of California, Riverside to S.-W.D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou-Wei Ding or Qingfa Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Raza, A., Ding, SW., Wu, Q. (2022). Culture-Independent Discovery of Viroids by Deep Sequencing and Computational Algorithms. In: Rao, A.L.N., Lavagi-Craddock, I., Vidalakis, G. (eds) Viroids. Methods in Molecular Biology, vol 2316. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1464-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1464-8_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1463-1

  • Online ISBN: 978-1-0716-1464-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics