Skip to main content

Purification of Hibernating and Active C− Ribosomes from Zinc-Starved Mycobacteria

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2314))

Abstract

Zinc starvation in Mycobacterium smegmatis and Mycobacterium tuberculosis induces ribosome remodeling and hibernation. Remodeling involves replacement of C+ ribosomal (r-) proteins containing the zinc-binding CXXC motif with their C− paralogues without the motif. Hibernation is characterized by binding of mycobacterial-specific protein Y (Mpy) to 70S C− ribosomes, stabilizing the ribosome in an inactive state that is also resistant to kanamycin and streptomycin. We observed that ribosome remodeling and hibernation occur at two different concentrations of cellular zinc. Here, we describe the methods to purify hibernating and active forms of C− ribosomes from zinc-starved mycobacteria, along with purification of C+ ribosomes from zinc-rich mycobacterial cells. In vitro analysis of these distinct types of ribosomes will facilitate screening of small molecule inhibitors of ribosome hibernation for improved therapeutics against mycobacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson DN, Nierhaus KH (2007) The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 42(3):187–219. https://doi.org/10.1080/10409230701360843

    Article  CAS  PubMed  Google Scholar 

  2. Wada A, Yamazaki Y, Fujita N, Ishihama A (1990) Structure and probable genetic location of a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase Escherichia coli cells. Proc Natl Acad Sci U S A 87(7):2657–2661. https://doi.org/10.1073/pnas.87.7.2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maki Y, Yoshida H, Wada A (2000) Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli. Genes Cells 5(12):965–974

    Article  CAS  Google Scholar 

  4. Ueta M, Wada C, Wada A (2010) Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Genes Cells 15(1):43–58. https://doi.org/10.1111/j.1365-2443.2009.01364.x

    Article  CAS  PubMed  Google Scholar 

  5. Ueta M, Wada C, Daifuku T, Sako Y, Bessho Y, Kitamura A, Ohniwa RL, Morikawa K, Yoshida H, Kato T, Miyata T, Namba K, Wada A (2013) Conservation of two distinct types of 100S ribosome in bacteria. Genes Cells 18(7):554–574. https://doi.org/10.1111/gtc.12057

    Article  CAS  PubMed  Google Scholar 

  6. Ueta M, Yoshida H, Wada C, Baba T, Mori H, Wada A (2005) Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli. Genes Cells 10(12):1103–1112. https://doi.org/10.1111/j.1365-2443.2005.00903.x

    Article  CAS  PubMed  Google Scholar 

  7. Agafonov DE, Kolb VA, Nazimov IV, Spirin AS (1999) A protein residing at the subunit interface of the bacterial ribosome. Proc Natl Acad Sci U S A 96(22):12345–12349. https://doi.org/10.1073/pnas.96.22.12345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Polikanov YS, Blaha GM, Steitz TA (2012) How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336(6083):915–918. https://doi.org/10.1126/science.1218538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franken LE, Oostergetel GT, Pijning T, Puri P, Arkhipova V, Boekema EJ, Poolman B, Guskov A (2017) A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy. Nat Commun 8(1):722. https://doi.org/10.1038/s41467-017-00718-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beckert B, Abdelshahid M, Schafer H, Steinchen W, Arenz S, Berninghausen O, Beckmann R, Bange G, Turgay K, Wilson DN (2017) Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization. EMBO J 36(14):2061–2072. https://doi.org/10.15252/embj.201696189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khusainov I, Vicens Q, Ayupov R, Usachev K, Myasnikov A, Simonetti A, Validov S, Kieffer B, Yusupova G, Yusupov M, Hashem Y (2017) Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF. EMBO J 36(14):2073–2087. https://doi.org/10.15252/embj.201696105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Sharma MR, Koripella RK, Yang Y, Kaushal PS, Lin Q, Wade JT, Gray TA, Derbyshire KM, Agrawal RK, Ojha AK (2018) Zinc depletion induces ribosome hibernation in mycobacteria. Proc Natl Acad Sci U S A 115(32):8191–8196. https://doi.org/10.1073/pnas.1804555115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matzov D, Aibara S, Basu A, Zimmerman E, Bashan A, Yap MF, Amunts A, Yonath AE (2017) The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus. Nat Commun 8(1):723. https://doi.org/10.1038/s41467-017-00753-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flygaard RK, Boegholm N, Yusupov M, Jenner LB (2018) Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism. Nat Commun 9(1):4179. https://doi.org/10.1038/s41467-018-06724-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yusupova GZ, Yusupov MM, Cate JH, Noller HF (2001) The path of messenger RNA through the ribosome. Cell 106(2):233–241. https://doi.org/10.1016/s0092-8674(01)00435-4

    Article  CAS  PubMed  Google Scholar 

  16. Agrawal RK, Spahn CM, Penczek P, Grassucci RA, Nierhaus KH, Frank J (2000) Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 150(3):447–460. https://doi.org/10.1083/jcb.150.3.447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V (2001) Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291(5503):498–501. https://doi.org/10.1126/science.1057766

    Article  CAS  PubMed  Google Scholar 

  18. Hussain T, Llácer JL, Wimberly BT, Kieft JS, Ramakrishnan V (2016) Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation. Cell 167(1):133–144.e13. https://doi.org/10.1016/j.cell.2016.08.074

  19. Agrawal RK, Penczek P, Grassucci RA, Frank J (1998) Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc Natl Acad Sci U S A 95(11):6134–6138. https://doi.org/10.1073/pnas.95.11.6134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prisic S, Hwang H, Dow A, Barnaby O, Pan TS, Lonzanida JA, Chazin WJ, Steen H, Husson RN (2015) Zinc regulates a switch between primary and alternative S18 ribosomal proteins in Mycobacterium tuberculosis. Mol Microbiol 97(2):263–280. https://doi.org/10.1111/mmi.13022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Corro J, Palmer C, Ojha AK (2020) Progression from remodelling to hibernation of ribosomes in zinc starved mycobacteria. Proc Natl Acad Sci U S A 117(32):19528–19537

    Article  CAS  Google Scholar 

  22. Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR Jr (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4(11):1911–1919. https://doi.org/10.1111/j.1365-2958.1990.tb02040.x

    Article  CAS  PubMed  Google Scholar 

  23. Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69(1):164–174. https://doi.org/10.1111/j.1365-2958.2008.06274.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vilcheze C, Copeland J, Keiser TL, Weisbrod T, Washington J, Jain P, Malek A, Weinrick B, Jacobs WR Jr (2018) Rational design of biosafety level 2-approved, multidrug-resistant strains of Mycobacterium tuberculosis through nutrient auxotrophy. mBio 9(3). https://doi.org/10.1128/mBio.00938-18

  25. Kay AR (2004) Detecting and minimizing zinc contamination in physiological solutions. BMC Physiol 4:4. https://doi.org/10.1186/1472-6793-4-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Koripella RK, Sharma MR, Lee RE, Agrawal RK, Ojha AK (2021) Replacement of S14 protein in ribosomes of zinc-starved mycobacteria reduces spectinamide sensitivity. Antimicrob Agents Chemother 65(3):e01833-20. https://doi.org/10.1128/AAC.01833-20

  27. Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK (2021) Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. Microbiology (Reading), 67(2). https://doi.org/10.1099/mic.0.001035

Download references

Acknowledgments

Support from Tissue Culture and Media core facility of the Wadsworth Center in making the buffer stocks is acknowledged. Authors also acknowledge funding support from the National Institute of Health (AI132422 and AI144474 to A.K.O. and GM061576 to R.K.A.) and New York State Department of Health in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Ojha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Y., Keshavan, P., Corro, J.H., Koripella, R.K., Agrawal, R.K., Ojha, A.K. (2021). Purification of Hibernating and Active C− Ribosomes from Zinc-Starved Mycobacteria. In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics