Skip to main content

Bioassays for the Evaluation of Target Neutralization and Complement-Dependent Cytotoxicity (CDC) of Therapeutic Antibodies

  • Protocol
  • First Online:
Therapeutic Antibodies

Abstract

Therapeutic monoclonal antibodies (mAbs) are complex bioengineered proteins that require to be routinely characterized with robust and reliable bioassays. Infliximab was the first anti-TNFα mAb approved for use in humans and its use has revolutionized the treatment TNF-mediated inflammatory disorders. The mechanism of action (MOA) of infliximab involves its binding to soluble (s) and membrane (m) TNFα. Here, we describe two simple in vitro bioassays for the assessment of key activities of infliximab. First, a bioassay for TNFα neutralization, which evaluates the Fab binding to sTNFα and the consequent reduction in the activation of TNFα receptors and TNFα-induced expression of adhesion molecules on endothelial cells. A second bioassay evaluates the triggering of Complement-Dependent Cytotoxicity (CDC) in cells expressing mTNFα, which requires the interaction of infliximab-Fc with proteins of the complement system. In both cases, the biological responses are measured by flow cytometry, which is accessible for most laboratories. The methods reported here can be easily adapted to other therapeutic mAbs with similar MOA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steeland S, Libert C, Vandenbroucke RE (2018) A new venue of TNF targeting. Int J Mol Sci 19:E1442. https://doi.org/10.3390/ijms19051442

    Article  CAS  PubMed  Google Scholar 

  2. Sedger LM, McDermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev 25:453–472. https://doi.org/10.1016/j.cytogfr.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  3. Metcalfe C, Dougall T, Bird C et al (2019) The first World Health Organization international standard for infliximab products: a step towards maintaining harmonized biological activity. mAbs 11:13–25. https://doi.org/10.1080/19420862.2018.1532766

    Article  CAS  PubMed  Google Scholar 

  4. Horiuchi T, Mitoma H, Harashima S et al (2010) Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49:1215–1228. https://doi.org/10.1093/rheumatology/keq031

    Article  CAS  Google Scholar 

  5. Mitoma H, Horiuchi T, Tsukamoto H, Ueda N (2018) Molecular mechanisms of action of anti-TNF-alpha agents—comparison among therapeutic TNF-alpha antagonists. Cytokine 101:56–63. https://doi.org/10.1016/j.cyto.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  6. Velasco-Velazquez MA, Salinas-Jazmin N, Hisaki-Itaya E et al (2017) Extensive preclinical evaluation of an infliximab biosimilar candidate. Eur J Pharm Sci 102:35–45. https://doi.org/10.1016/j.ejps.2017.01.038

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Yu W, Hargrove JL et al (2002) Inhibition of TNF-alpha induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis 161:381–386. https://doi.org/10.1016/S0021-9150(01)00672-4

    Article  CAS  PubMed  Google Scholar 

  8. Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520. https://doi.org/10.3389/fimmu.2014.00520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mitoma H, Horiuchi T, Tsukamoto H et al (2008) Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum 58:1248–1257. https://doi.org/10.1002/art.23447

    Article  CAS  PubMed  Google Scholar 

  10. Nesbitt A, Fossati G, Bergin M et al (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis 13:1323–1332. https://doi.org/10.1002/ibd.20225

    Article  PubMed  Google Scholar 

  11. Arora T, Padaki R, Liu L et al (2009) Differences in binding and effector functions between classes of TNF antagonists. Cytokine 45:124–131. https://doi.org/10.1016/j.cyto.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Salinas-Jazmin N, Gonzalez-Gonzalez E, Vasquez-Bochm LX et al (2017) In vitro methods for comparing target binding and CDC induction between therapeutic antibodies: applications in biosimilarity analysis. J Vis Exp. https://doi.org/10.3791/55542

  13. Shealy DJ, Cai A, Staquet K et al (2010) Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor alpha. mAbs 2:428–439. https://doi.org/10.4161/mabs.12304

    Article  PubMed  Google Scholar 

  14. Camacho-Sandoval R, Sosa-Grande EN, Gonzalez-Gonzalez E et al (2018) Development and validation of a bioassay to evaluate binding of adalimumab to cell membrane-anchored TNFalpha using flow cytometry detection. J Pharm Biomed Anal 155:235–240. https://doi.org/10.1016/j.jpba.2018.03.057

    Article  CAS  PubMed  Google Scholar 

  15. Perfetto SP, Chattopadhyay PK, Lamoreaux L et al (2006) Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J Immunol Methods 313:199–208. https://doi.org/10.1016/j.jim.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  16. Perfetto SP, Chattopadhyay PK, Lamoreaux L et al (2010) Amine-reactive dyes for dead cell discrimination in fixed samples. Curr Protoc Cytom. https://doi.org/10.1002/0471142956.cy0934s53

  17. Scallon B, Cai A, Solowski N et al (2002) Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther 301:418–426. https://doi.org/10.1124/jpet.301.2.418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was partially supported by CONACYT A1-S-18285 and PAPIIT UNAM IN219719. The results reported here were generated at “Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos” (LANSEIDI-FarBiotec-CONACYT), which is supported by CONACYT.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salinas-Jazmín, N., Medina-Rivero, E., Velasco-Velázquez, M.A. (2022). Bioassays for the Evaluation of Target Neutralization and Complement-Dependent Cytotoxicity (CDC) of Therapeutic Antibodies. In: Houen, G. (eds) Therapeutic Antibodies. Methods in Molecular Biology, vol 2313. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1450-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1450-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1449-5

  • Online ISBN: 978-1-0716-1450-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics