Skip to main content

Monitoring Mitochondrial Function in Mouse Embryonic Stem Cells (mESCs)

  • Protocol
  • First Online:
Mitochondrial Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2310))

  • 1647 Accesses

Abstract

Mouse embryonic stem cells (mESCs) can be grown in culture, recapitulating the different states of pluripotency of their in vivo counterparts, with notably different metabolic profiles. mESCs in a naïve pluripotent state present an ambivalent metabolism, using both glycolysis and oxidative phosphorylation as energy sources. Here, we describe a method to evaluate the oxidative function of naïve mESCs using the Seahorse Extracellular Flux Analyzer coupled to flow cytometry analysis of mitochondrial transmembrane potential using the TMRM fluorescence probe, thus assessing both oxygen consumption and mitochondrial membrane potential. This may be a useful protocol for understanding how mitochondrial oxidative function and potential of mESCs change in certain circumstances, and how is it related with various pluripotency/differentiation phenotypes.

Bibiana Correia and Maria Inês Sousa are the Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  CAS  Google Scholar 

  3. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492

    Article  CAS  Google Scholar 

  4. Weinberger L, Ayyash M, Novershtern N, Hanna JH (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17(3):155

    Article  CAS  Google Scholar 

  5. De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch G, Lensch MW, Lujan E, Pei D, Rossant J, Wernig M, Park J, Lensch MW (2015) Hallmarks of pluripotency. Nature 525(7570):469–478

    Article  Google Scholar 

  6. Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47(1):93–122

    Article  CAS  Google Scholar 

  7. Nichols J, Smith A (2012) Pluripotency in the embryo and in culture. Cold Spring Harb Perspect Biol 4:1–15

    Article  Google Scholar 

  8. Bulut-Karslioglu A, Biechele S, Jin H, Macrae TA, Hejna M, Gertsenstein M, Song JS, Ramalho-Santos M (2016) Inhibition of mTOR induces a paused pluripotent state. Nature 540(7631):119–123

    Article  CAS  Google Scholar 

  9. Varum S, Momčilović O, Castro C, Ben-Yehudah A, Ramalho-Santos J, Navara CS (2009) Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res 3(2):142–156

    Article  CAS  Google Scholar 

  10. Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA IV, Ramalho-Santos J, Houten BV, Schatten G (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6(6):e20914

    Article  CAS  Google Scholar 

  11. Pereira SL, Grãos M, Rodrigues AS, Anjo SI, Carvalho RA, Oliveira PJ, Arenas E, Ramalho-Santos J (2013) Inhibition of mitochondrial complex III blocks neuronal differentiation and maintains embryonic stem cell pluripotency. PLoS One 8(12):e82095

    Article  Google Scholar 

  12. Rodrigues AS, Correia M, Gomes A, Pereira SL, Perestrelo T, Sousa MI, Ramalho-Santos J (2015) Dichloroacetate, the pyruvate dehydrogenase complex and the modulation of mESC pluripotency. PLoS One 10(7):e0131663

    Article  Google Scholar 

  13. Rodrigues AS, Pereira SL, Correia M, Gomes A, Perestrelo T, Ramalho-Santos J (2015) Differentiate or die: 3-bromopyruvate and pluripotency in mouse embryonic stem cells. PLoS One 10(8):e0135617

    Article  Google Scholar 

  14. Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau CA, Horwitz MS, Hockenbery D, Ware C, Ruohola-Baker H (2012) HIF1a induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31:2103–2116

    Article  CAS  Google Scholar 

  15. Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, Ross CA, Cacchiarelli D, Xia Q, Seligson M, Xie W, Cahan P, Wang L, Ng SC, Tintara S, Trapnell C, Onder T, Loh YH, Mikkelsen T, Sliz P, Teitell MA, Asara JM, Marto JA, Li H, Collins JJ, Daley GQ (2016) LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19:66–80

    Article  CAS  Google Scholar 

  16. Cliff TS, Dalton S (2017) Metabolic switching and cell fate decisions: implications for pluripotency, reprogramming and development. Curr Opin Genet Dev 46:44–49

    Article  CAS  Google Scholar 

  17. Crespo FL, Sobrado VR, Gomez L, Cervera AM, McCreath KJ (2010) Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose. Stem Cells 28:1132–1142

    CAS  PubMed  Google Scholar 

  18. Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. EMBO J 31:2448–2460

    Article  CAS  Google Scholar 

  19. Fenelon JC, Renfree MB (2018) The history of the discovery of embryonic diapause in mammals. Biol Reprod 99(1):241–251

    Article  Google Scholar 

  20. Fenelon JC, Banerjee A, Murphy BD (2014) Embryonic diapause: development on hold. Int J Dev Biol 58(2-4):163–174

    Article  Google Scholar 

  21. Hussein AM, Wang Y, Mathieu J, Margaretha L, Song C, Jones DC, Cavanaugh C, Miklas JW, Mahen E, Showalter MR, Ruzzo WL, Fiehn O, Ware CB, Blau CA, Ruohola-Baker H (2020) Metabolic control over mTOR-dependent diapause-like state. Dev Cell 52:236–250.e7

    Article  CAS  Google Scholar 

  22. Sousa MI, Correia B, Rodrigues AS, Ramalho-Santos J (2020) Metabolic characterization of a paused-like pluripotent state. Biochim Biophys Acta Gen Subj 1864(8):129612

    Article  CAS  Google Scholar 

  23. Symersky J, Osowski D, Walters DE, Mueller DM (2012) Oligomycin frames a common drug-binding site in the ATP synthase. Proc Natl Acad Sci 109(35):13961–13965

    Article  CAS  Google Scholar 

  24. Kenwood BM, Weaver JL, Bajwa A, Poon IK, Byrne FL, Murrow BA et al (2014) Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab 3(2):114–123

    Article  CAS  Google Scholar 

  25. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva VA, Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the members of the Biology of Reproduction and Stem Cells research group, at the Center from Neuroscience and Cell Biology, for the discussion and constructive feedback related to this work. We also thank Ana Sofia Rodrigues for optimizing the flow cytometry analysis of mitochondrial transmembrane potential using the TMRM probe.

Funding: This work was funded by Fundação para a Ciência e Tecnologia (FCT) Portugal for the Ph.D. scholarships attributed to M.I.S. (SFRH/BD/86260/2012) and B.S. (SFRH/BD/144150/2019). Funding was also provided by the STEM@REST Project (CENTRO-01-0145-FEDER-028871) and PAC CANCEL_STEM (POCI-01-0145-FEDER-016390. A.F.B. was hired through the STEM@REST Project (CENTRO-01-0145-FEDER-028871). Additional funding was provided by the European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme: project CENTRO-01-0145-FEDER-000012-HealthyAging2020, the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation, and the Portuguese national funds via FCT—Fundação para a Ciência e a Tecnologia, I.P.: project POCI-01-0145-FEDER-007440 that attributed a fellowship to B. S. (BIM - IN0828).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ramalho-Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Correia, B., Sousa, M.I., Branco, A.F., Ramalho-Santos, J. (2021). Monitoring Mitochondrial Function in Mouse Embryonic Stem Cells (mESCs). In: Palmeira, C.M., Rolo, A.P. (eds) Mitochondrial Regulation. Methods in Molecular Biology, vol 2310. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1433-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1433-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1432-7

  • Online ISBN: 978-1-0716-1433-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics