Skip to main content

Structure Determination of Membrane Proteins Using X-Ray Crystallography

  • Protocol
  • First Online:
Structure and Function of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2302))

Abstract

Membrane proteins serve essential roles in all aspects of life and make up roughly one-third of all genomes from prokaryotes to eukaryotes. Their responsibilities include mediating cell signaling, nutrient import, waste export, cellular communication, trafficking, and immunity. For their critical role in many cellular processes, membrane proteins serve as targets for up to 50% of drugs currently on the market and remain primary targets in new therapeutics being developed. Despite their importance and abundance in nature, only ~1% of structures in the Protein Data Bank are of transmembrane proteins. This discrepancy can be directly attributed to the biochemical properties of membrane proteins and the difficulty in producing sufficient yields for structural studies or the difficulty in growing well-ordered crystals. Here, we present methods from our work that outline our general pipeline from cloning to structure determination of membrane proteins, with a focus on using X-ray crystallography, which still yields ~90% of all structures being deposited into the Protein Data Bank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slusky JS (2017) Outer membrane protein design. Curr Opin Struct Biol 45:45–52

    Article  CAS  PubMed  Google Scholar 

  2. Krogh A, Larsson B, von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  3. Fairman JW, Noinaj N, Buchanan SK (2011) The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21(4):523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsirigos KD, Govindarajan S, Bassot C et al (2018) Topology of membrane proteins-predictions, limitations and variations. Curr Opin Struct Biol 50:9–17

    Article  CAS  PubMed  Google Scholar 

  5. Chaturvedi D, Mahalakshmi R (2017) Transmembrane beta-barrels: evolution, folding and energetics. Biochim Biophys Acta Biomembr 1859(12):2467–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hedin LE, Illergard K, Elofsson A (2011) An introduction to membrane proteins. J Proteome Res 10(8):3324–3331

    Article  CAS  PubMed  Google Scholar 

  7. von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7(12):909–918

    Article  CAS  Google Scholar 

  8. Walther DM, Rapaport D, Tommassen J (2009) Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 66(17):2789–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jeffery CJ (2016) Expression, solubilization, and purification of bacterial membrane proteins. Curr Protoc Protein Sci 83:29.15.1–29.15.15

    Article  Google Scholar 

  10. Ki MR, Pack SP (2020) Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 104(6):2411–2425

    Article  CAS  PubMed  Google Scholar 

  11. Rosano GL, Morales ES, Ceccarelli EA (2019) New tools for recombinant protein production in Escherichia coli: a 5-year update. Protein Sci 28(8):1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chun E, Thompson AA, Liu W et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20(6):967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mancusso R, Karpowich NK, Czyzewski BK et al (2011) Simple screening method for improving membrane protein thermostability. Methods 55(4):324–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. White JF, Noinaj N, Shibata Y et al (2012) Structure of the agonist-bound neurotensin receptor. Nature 490(7421):508–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noinaj N, Kuszak AJ, Gumbart JC et al (2013) Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 501(7467):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tropea JE, Cherry S, Waugh DS (2009) Expression and purification of soluble His(6)-tagged TEV protease. Methods Mol Biol 498:297–307

    Article  CAS  PubMed  Google Scholar 

  17. Snijder HJ, Hakulinen J (2016) Membrane protein production in E. coli for applications in drug discovery. Adv Exp Med Biol 896:59–77

    Article  CAS  PubMed  Google Scholar 

  18. Carpenter EP, Beis K, Cameron AD et al (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18(5):581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Kuipers G, Niemiec L et al (2015) High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG. Microb Cell Factories 14:142

    Article  CAS  Google Scholar 

  20. Deacon SE, Roach PC, Postis VL et al (2008) Reliable scale-up of membrane protein over-expression by bacterial auto-induction: from microwell plates to pilot scale fermentations. Mol Membr Biol 25(8):588–598

    Article  CAS  PubMed  Google Scholar 

  21. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234

    Article  CAS  PubMed  Google Scholar 

  22. Structural Genomics C, China Structural Genomics C, Northeast Structural Genomics C et al (2008) Protein production and purification. Nat. Methods 5(2):135–146

    Google Scholar 

  23. Studier FW (2018) T7 expression systems for inducible production of proteins from cloned genes in E. coli. Curr Protoc Mol Biol 124(1):e63

    Article  PubMed  CAS  Google Scholar 

  24. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298

    Article  CAS  PubMed  Google Scholar 

  25. Dumon-Seignovert L, Cariot G, Vuillard L (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif 37(1):203–206

    Article  CAS  PubMed  Google Scholar 

  26. Wu R, Stephenson R, Gichaba A et al (2020) The big BAM theory: an open and closed case? Biochim Biophys Acta Biomembr 1862(1):183062

    Article  CAS  PubMed  Google Scholar 

  27. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1–2):105–117

    Article  CAS  PubMed  Google Scholar 

  28. le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508(1–2):86–111

    Article  PubMed  Google Scholar 

  29. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276(35):32403–32406

    Article  CAS  PubMed  Google Scholar 

  30. Huang KS, Bayley H, Liao MJ et al (1981) Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem 256(8):3802–3809

    Article  CAS  PubMed  Google Scholar 

  31. Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 9(5):497–501

    Article  CAS  PubMed  Google Scholar 

  32. Yamashita S, Lukacik P, Barnard TJ et al (2011) Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 19(11):1672–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cherezov V, Clogston J, Misquitta Y et al (2002) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J 83(6):3393–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61(Pt 9):1173–1180

    Article  PubMed  CAS  Google Scholar 

  35. Pflugrath JW (2015) Practical macromolecular cryocrystallography. Acta Crystallogr F Struct Biol Commun 71(Pt 6):622–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li D, Boland C, Aragao D et al (2012) Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J Vis Exp 67:e4001

    Google Scholar 

  37. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71(Pt 1):3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caffrey M (2003) Membrane protein crystallization. J Struct Biol 142(1):108–132

    Article  CAS  PubMed  Google Scholar 

  39. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316(1):1–6

    Article  CAS  PubMed  Google Scholar 

  40. Faham S, Boulting GL, Massey EA et al (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci 14(3):836–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Warren AJ, Axford D, Paterson NG et al (2016) Exploiting microbeams for membrane protein structure determination. Adv Exp Med Biol 922:105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Birch J, Axford D, Foadi J et al (2018) The fine art of integral membrane protein crystallisation. Methods 147:150–162

    Article  CAS  PubMed  Google Scholar 

  43. Casanas A, Warshamanage R, Finke AD et al (2016) EIGER detector: application in macromolecular crystallography. Acta Crystallogr D Struct Biol 72(Pt 9):1036–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cherezov V, Hanson MA, Griffith MT et al (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 microm size X-ray synchrotron beam. J R Soc Interface 6(Suppl 5):S587–S597

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hilgart MC, Sanishvili R, Ogata CM et al (2011) Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. J Synchrotron Radiat 18(Pt 5):717–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haupert LM, Simpson GJ (2011) Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods 55(4):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kissick DJ, Wanapun D, Simpson GJ (2011) Second-order nonlinear optical imaging of chiral crystals. Annu Rev Anal Chem (Palo Alto, Calif) 4:419–437

    Article  CAS  Google Scholar 

  48. Schulz GE (2011) Validation of the detergent micelle classification for membrane protein crystals and explanation of the Matthews Graph for soluble proteins. Protein Sci 20(10):1765–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding supporting this work through grants GM127884 (N.N.), GM127896 (N.N.), and GM132024 (E.B., T32 trainee) from the National Institute of General Medical Sciences (NIGMS) and AI148103 (C.O., T32 trainee) from the National Institute of Allergy and Infectious Disease (NIAID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Noinaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Billings, E., Lundquist, K., Overly, C., Srinivasan, K., Noinaj, N. (2021). Structure Determination of Membrane Proteins Using X-Ray Crystallography. In: Schmidt-Krey, I., Gumbart, J.C. (eds) Structure and Function of Membrane Proteins. Methods in Molecular Biology, vol 2302. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1394-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1394-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1393-1

  • Online ISBN: 978-1-0716-1394-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics