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Abstract

RNA molecules play important roles in almost every cellular process, and their functions are mediated by
their sequence and structure. Determining the secondary structure of RNAs is central to understanding
RNA function and evolution. RNA structure probing techniques coupled to high-throughput sequencing
allow determining structural features of RNA molecules at transcriptome-wide scales. Our group recently
developed a novel Illumina-based implementation of in vitro parallel probing of RNA structures called
nextPARS.

Here, we describe a protocol for the computation of the nextPARS scores and their use to obtain the
structural profile (single- or double-stranded state) of an RNA sequence at single-nucleotide resolution.

Key words RNA secondary structure, Genome-wide enzymatic probing, RNA structurome, RNA
folding

1 Introduction

Knowledge of the secondary structure of RNAs both in vivo and
in vitro is crucial for understanding the regulatory roles that RNAs
exert in most cell functions, via characterizing their intramolecular
interactions, and how they can change depending on external con-
ditions, including interactions with other molecules [1]. Among
several approaches that have been described during the last years to
interrogate RNA structure using high throughput sequencing
technologies, nextPARS [2] is an enzymatic-based technique that
allows probing the secondary structure of RNAs in vitro at a
genome-wide scale. It is an adaptation of the previously developed
PARS [3] strategy to the Illumina sequencing platform, which
allows for sample multiplexing and higher throughput than the
original technique.
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Fig. 1 nextPARS Pipeline. Flowchart showing the steps involved in the nextPARS
protocol to go from sequencing reads to structural profiles of RNAs present in a
sample

To obtain structural information of RNAs using nextPARS [2],
two pg of total or polyA-selected RNA of the species of interest are
first denatured, folded, and then enzymatically probed with RNase
V1 to cleave double-stranded sites and with S1 nuclease in a sepa-
rate sample to cut single-stranded conformations. Some additional
RNA molecules of interest can be spiked in each of the samples, as
possible positive controls with known structure, for example.
Digested samples are library prepared using the TruSeq Small
RNA Sample Preparation Kit (Illumina), reverse transcribed,
PCR-amplified and finally sequenced in multiplex with Illumina
platform. The reads obtained are mapped to the reference genome
and the cutting points are determined at the 5’end of the reads.
Further details on the experimental methodology can be found in
the original nextPARS publication [2].

In this chapter, we briefly describe nextPARS methodology and
report, using an illustrative example, how the nextPARS raw output
data is analyzed in order to go from sequencing reads to structural
profiles of RNAs present in a sample (Fig. 1).

2 Materials

2.1 Dataset
and Overview

Let us briefly describe the samples and formats for this work (Fig. 1).

— Raw sequencing data: we obtained the sequencing data (raw
reads) from the SRA database (accession number



2.2 Computational
Hardware

2.3 Computational
Software
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PRJNA380612). The raw sequencing data is in standard Sanger
FASTQ format. Details on the experimental methodology can
be found in nextPARS publication [2].

— Preprocessing: we removed adapter sequences from sequencing
reads. The input and output data is in FASTQ format.

— Mapping of Illumina reads and determination of enzymatic
cleavage points. lllumina reads were aligned to the S. cerevisine
reference genome and we concatenated the sequences of spike-
ins control molecules. We use S288C full chromosomes version
R64-2-1, released 18 Nov 2014 (fasta file) and features file from
the 16 nuclear chromosomes plus the mitochondrial genome
(gft file). The output is in .bam format.

— Parsing. For each read alignment, we retrieved the 5'-end posi-
tion in the reference genome and compared this to the genome
annotation. The resulting digestion profile is stored as the num-
ber of cuts per position of the transcript. This is stored in csv,
comma-separated format (values for each position are separated
by semicolons).

— nextPARS score: To obtain the scores from nextPARS experi-
ments we used as an input the csv files described above (number
of cuts per position of the transcript), and we obtained a new csv
file. This file contains a structural profile of an RNA transcript
(single- or double-stranded state), with a score for each nucleo-
tide that ranges from —1.0 (highest preference for single strand)
to 1.0 (highest preference for double-strand).

We tested the pipeline on a computer with Intel(R) Xeon(R) CPU
3.30GHz, with four cores and 32 GB of RAM. We use Linux
(Debian) on x86_64 Architecture. The size of the raw data, inter-
mediate files and final results are about 30 GB for this example.
Therefore, 100 GB of hard disk space is required for computing the
example data.

Reproducibility facilitates peer review and ensures that the model,
application, and analysis you build can run without worrying about
details and software installation. Also, it facilitates collaboration and
sharing. Therefore, we built a Docker container based on Ubuntu
18 for nextPARS software. Docker is a tool designed to make it
easier to create and run applications by using containers. Contain-
ers allow developers to package up an application without the need
to make custom builds for different environments. As a result, the
application will run on any other Linux machine regardless of any
custom settings the machine may have that could differ from the
machine used to write and test the code.
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This protocol assumes users have a Unix-like operating system
(i.e., Linux or macOS X), with a bash shell or similar, thus all
commands have to be run in a terminal. Although it is possible to
follow this protocol with a Microsoft Windows machine (e.g., using
the Unix-like Cygwin), the additional steps required are not
discussed here.

3 Methods

3.1 Setup
the Pipeline: TIMING
<5 min

3.1.1 Clone the Git
Repository

To illustrate this example, we will use six samples from S. cerevisine
and additional RNA molecules from V1 and S1 nextPARS experi-
ment. The data can be downloaded from the publicly SRA database
(accession number PRJNA380612) (se¢e Note 1). Most of the
examples are shown using one of the samples (1_S1), so you have
to repeat each step on the other five samples. In step 7, the scripts
were adapted to process all samples together.

In order to go from the fastq outputs of the nextPARS experi-
ments to a format that allows us to calculate scores, first map the
reads in the fastq files to a reference genome using the program of
your choice [4]. If you already did that you can omit steps 2 and
3. But, If you want to download the data from SRA with SRA
toolkit, trim the sequences with cutadapt and map to the genome
with STAR (see Note 2 and Subheadings 3.2 and 3.3).

This table shows the correlation of each sample run from the
SRA project and the sample name (V1’s and S1’°s experiments).

# RUN SAMPLE NAME
SRR5422921 1 V1.fastqg
SRR5422920 2 V1.fastqg
SRR5422919 3 V1.fastqg
SRR5422926 1 Sl.fastg
SRR5422925 2 sl.fastqg
SRR5422924 3 sSl.fastqg

H oH= S HE =

You can download the source code and the sample data from
GitHub  (https: //github.com/Gabaldonlab/nextPARS_docker)
and the docker container from Docker Hub (https: //hub.docker.
com/nextpars).

git clone https://github.com/Gabaldonlab/nextPARS_docker.git

Download the last image version from Docker Hub.

docker pull cgenomics/nextpars


https://github.com/Gabaldonlab/nextPARS_docker
https://hub.docker.com/
https://hub.docker.com/

3.1.2 Download and Run
Docker Container

3.1.3  Build Genome
Indexes (Optional)
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Start a docker interactive session using the nextpars container.

docker run -it -v /path/to/nextpars/github/:/home/nextPARS

cgenomics/nextpars:latest bash

The /path/to/nextpars/github refers to the path from
your local machine where you have the nextPARS directory (clone
from github). Warning: Anything you do within the docker will be
reflected in the data folder!

Now you are working inside the docker container. First, c¢d into
bin/scripts directory and execute the configure bash script.

cd /home/nextPARS/bin/scripts

source configure.sh

Step 1.3, 2, and 3 are optional. If you want to trim and map the raw
reads with different software than cutadapt [5] and STAR [6],
proceed directly to Step 4 (Fig. 1).

STAR requires a reference genome index for mapping. We use
S. cerevisine S288C as the reference genome that was downloaded
from Saccharomyces Genome Database (SGD) [7]. We build the
index by using the following command.

cd SDATAPATH/DB/saccharomyces_cerevisiae

STAR --runThreadN 4 \

--runMode genomeGenerate \

--genomeDir . \

--genomeFastaFiles saccharomyces_cerevisiae.fasta \
--sjdbGTFfile saccharomyces_cerevisiae.gff \
--sJjdbGTFfeatureExon gene \
--sjdbGTFtagExonParentTranscript Parent

# --runThreadN Number of threads to be used for genome
generation
# --runMode genomeGenerate option directs STAR to run genome

indices generation job

# --genomeDir specifies the path to the directory where the
genome indices are stored

# genomeFastaFiles specified one or more FASTA files with the
genome reference sequences

# specifies the path to the file with annotated transcripts in
the standard GTF format

# --sjdbGTFfeatureExon tag name to be used as exons’ parents
for building transcripts

# --sjdbOverhang specifies the length of the genomic sequence
around the annotated junction to be used in constructing the

splice junctions database.



56 Uciel Chorostecki et al.

3.2 Trimming
Sequence Adapters:
TIMING <3 min per
sample (Optional)

3.3 Aligning

the Reads Against
the Genome using
STAR: TIMING <5 min
per Sample (Optional)

Raw sequencing reads likely to contain parts of the adapter
sequence. Therefore, these sequences must be identified and
trimmed. These adapters can be removed using a specialized
adapter removal tool and there is a more than large choice for the
appropriate published adapter trimming tools. Here, we use cuta-
dapt for this purpose. In fastg directory you should have the
6 samples from S. cerevisine nextPARS experiments.

cd SDATAPATH

cutadapt -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -m 18 -j 4 -o
SDATAPATH/trimming/1_S1.fastqg.gz S$SDATAPATH/fastqg/l_S1.fastqg

# -a ADAPTER Regular 3’ adapter

# -m LENGTH Discard processed reads that are shorter than
LENGTH.

# -j N, where N is the number of cores to use.

# -o output file (output file formats are FASTA and FASTQ,
with optional compression and the output file format is

recognized from the file name extension).

Mapping reads to the genome: TIMING <5 min per sample
The trimmed reads should be aligned to the reference genome.
Mapping results are in BAM format.

cd SDATAPATH

STAR --runThreadN 4 \

--genomeDir S$SDATAPATH/DB/saccharomyces_cerevisiae/ \
--readFilesIn $DATAPATH/trimming/1_S1.fastqg.qz \
--outFileNamePrefix $DATAPATH/mapping/l_S1.fastqg \
--outSAMtype BAM SortedByCoordinate \

--outTmpDir $TMP_DIR/1_S1.fastqg

# --runThreadN Number of threads to use for mapping

# --genomeDir path of the STAR index

# ---readFilesIn name(s) (with path) of the files containing
the sequences to be mapped

# --outFileNamePrefix Output files name prefix (full or
relative path).

# --outSAMtype type of SAM/BAM output

# --readFilesCommand Command line to execute for each of the
input files.

# --outTmpDir path to a directory that will be wused as
temporary by STAR.

Once you obtain the bam file, use nextPARSParser.py to count the
number of reads at each position (which indicates a cut site for the
enzyme in the file name).



3.4 Parser: Number
of Reads Beginning
at Each Position:
TIMING <8 min per
Sample

3.5 Filtered Out
Transcripts with Low
Counts: TIMING

<1 min per Sample

3.6 nextPARS
Scores: TIMING
<1 min per Sample
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If you skipped steps 1.3, 2 and 3, we assume that you have the
bam files in the data/mapping directory. As an alternative, you
can use already generated bam files (subsets from the originals),
that are in data/mapping_subset directory. To do so, you have
to change -b argument by modifying mapping by mapping_sub-
set on the following command.

cd $BINPATH

python nextPARSParser.py \

-b SDATAPATH/mapping/l_S1.fastgAligned.sortedByCoord.out.bam
\

-g SDATAPATH/DB/saccharomyces_cerevisiae/saccharomyces_cere-
visiae.gff \

-0 S$SDATAPATH/tab/1_Sl.tab \

-t gene

# -b Path to the SAM/BAM file containing the mapped reads

# -g Path to the GTF file containing the features

# -o The name given to the output file in csv format (.tab
extension)

# -t Feature type (3rd column in GTF file) to be wused
(default, suitable for Ensembl GTF files: exon)

# -a Skip all reads with MAPQ alignment quality lower than the
given minimum value (default: 10). MAPQ is the 5th column of a
SAM/BAM file and its usage depends on the software used to map

the reads.

The output of this script is a csv file containing the name of the
molecule and the count values (number of inferred enzyme cuts)
for each position, separated by semicolons.

The reformat_PARSparser_output.py script filters out transcripts
with low counts and produces output in csv format.

cd $BINPATH
python reformat_PARSparser_output.py -t S$DATAPATH/tab/1_S1.
tab -m 20

# -m Min average counts for a given transcript

# -tab csv file to be reformatted

To obtain the final scores from nextPARS experiments (from .tab
files), use the following command. For details on how to calculate
the scores, see Note 3.
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3.7 Automatization
of Steps

cd SBINPATH
python get_combined_score.py \
-1 Ul \
-inDir ../data/tab \
-f ../data/fasta/Ul.fa \
-o ../data/score/Ul_score.RNN. tab

# -1 to indicate the molecule for which you want scores (all
available data files will be included in the calculations --
molecule name must match that in the data file names)

# -inDir to indicate the directory containing the .tab files
with read counts for each V1 and S1 enzyme cuts

# -f to indicate the path to the fasta file for the input
molecule

# -s to produce an output Structure Preference Profile (SPP)
file. Values for each position are separated by semi-colons.
Here 0 = paired position, 1 = unpaired position, and NA =
position with a score too low to determine its configuration.

# -o to output the calculated scores, again with values for
each position separated by semi-colons.

# --nP_only to output the calculated nextPARS scores before
incorporating the RNN classifier, again with values for each
position separated by semi-colons.

# {-V nextPARS} to produce an output with the scores that is
compatible with the structure visualization program VARNAL

# {-V spp} to produce an output with the SPP values that is
compatible with VARNA.

# -t to change the threshold value for scores when determining
SPP values [default = 0.8, or -0.8 for negative scores]

# -c to change the percentile cap for raw values at the
beginning of calculations [default = 95]

# -v to print some statistics in the case that there is a
reference CT file available. If not, will still print nextPARS
scores and info about the enzyme .tab files included in the

calculations.

In order to simplify steps 2-5 (Fig. 1), there are different bash
scripts in the bin/scripts directory inside the container. These
scripts will help to automate the pipeline and to use a set of V1
and S1 samples. We assume that you have the .fastq files in the
data/fastq directory.

cd ~/bin/scripts

Trimming

./trimming.sh



Profiling of RNA Structure Using nextPARS 59

Mapping reads. Use the following script to do the mapping.
First, you have to generate the genome index (step 1.3).

. /mapping.sh

If you want to start with the Parser step (count number of reads
beginning at each position), we assumed that you have the bam files
in the data/mapping directory. As an alternative, you can use
already generated bam files (subsets from the originals), that are
inside the data/mapping_subset directory. To do so, you have
to modify the FILE variable (changing mapping by mapping_-
subset) on the following script.

Parser

. /nextPARSParser.sh

Filter out transcripts

./reformat_PARSParser.sh

4 Notes

1. Download SRA sequences.
How to download sequence data files using SRA Toolkit is
explained in detail here: https: //www.ncbi.nlm.nih.gov/sra
docs/sradownload/.

2. Trimming the data.
If you are not sure if you need to trim your data, fastp [8]is
a tool that has implemented methods that automatically detect
5’ or 3’ adapters for both paired and single-end data.

3. Computation of nextPARS scores.

We present here a summary of the main step of the next-
PARS methodology, the computation of nextPARS scores from
csv (.tab) files (number of reads at each position, which indi-
cates a cut site for the enzyme). This is implemented in get_-
combined_score.py script. A more detailed description can be
found in [2].

Phase I: scores from raw experimental data (Sprofile).

There are five parts to the profile score (S,rofie) calculation:
(a) First, the digestion profiles are read from the .tab files.

This gives the number of cuts at each position, and it
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should include one or more .tab file for both the V1 and
S1 enzymes.

These raw counts are capped at the maximum percentile
of the value. By default, this is 95%, so that any position
with more cuts than 95% of the other positions are set to
this 95th percentile value. This helps to dampen the skew
in cuts due to the few positions that may be preferentially
cleaved by either V1 or S1 at rates orders of magnitudes
greater than most other positions.

The capped counts from each .tab file are then normalized
to its average so that each .tab now has a mean of 1 cut per
position. This corrects for (I) the different expression
levels for each molecule, (IT) different sequencing depth
between runs of the nextPARS experiment, and (III) the
different rates of cleavage between the V1 and Sl
enzymes, the latter of which cuts more frequently. Since
the final 50 positions do not have counts in a nextPARS
experiment of this example (50 bases long reads were
used), these are not included in the normalization.

In the case that multiple replicates of the experiment were
performed, a single list of cuts is generated separately for
V1 and S1 by taking the average cuts at each position.

Finally, a single combined § score is calculated to deter-
mine whether a position is likely to be paired or unpaired,
using the following steps. (1) The lists of average normal-
ized V1 and S1 cuts are each then normalized to a maxi-
mum of 1. (IT) S1 values are subtracted from V1 values to
know if a position tends to be cut more by one enzyme or
the other. (III) The resulting positive values are then
normalized to a maximum of +1 while the negative values
are normalized to a minimum of -1, such that the range of
values is always from -1 to +1. In this way, we have a fixed
range to which we can apply threshold values for cuts per
position to determine those which can be confidently
called paired or unpaired.

Phase II: scores from a recurrent neural network (RNN)

classifier (SRNN).

The Sproie calculation can then be complemented by recur-

rent neural network (RNN) classifier score (Sgnn) Which cal-
culates the probability that a position is paired or unpaired by
considering that nucleotide and its neighbors. The model is
trained on a database of known RNA secondary structures and
is constructed with a long term short memory (LTSM) layer
and a dense neural network layer [9, 10]. For details on the
training and implementation of the classifier model [2].

Use the RNN classifier separately.
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The RNN classifier that already incorporated into the next-
PARS scores can run separately, using a different experimental
score input (in .tab format), it can be run like so: python
predict2.py -f molecule.fasta -p scoreFile.tab -o

output.tab
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses /by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
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