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RNA-Seq Data Analysis in Galaxy

Bérénice Batut, Marius van den Beek, Maria A. Doyle, and Nicola Soranzo

Abstract

A complete RNA-Seq analysis involves the use of several different tools, with substantial software and
computational requirements. The Galaxy platform simplifies the execution of such bioinformatics analyses
by embedding the needed tools in its web interface, while also providing reproducibility. Here, we describe
how to perform a reference-based RNA-Seq analysis using Galaxy, from data upload to visualization and
functional enrichment analysis of differentially expressed genes.
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1 Introduction

In recent years, RNA sequencing (in short RNA-Seq) has become a
very widely used technology to analyze the continuously changing
cellular transcriptome, that is, the set of all RNA molecules in one
cell or a population of cells. One of the most common aims of
RNA-Seq is the profiling of gene expression by identifying genes or
molecular pathways that are differentially expressed (DE) between
two or more biological conditions.

The computational workflow for the detection of DE genes
and pathways from RNA-Seq data requires the use of several
command-line tools and substantial computational resources that
most users may not have access to.

Galaxy [1] is a powerful and easy to use web-based platform for
scientific data analysis. Steps in an analysis are executed by running
Galaxy tools, which describe how to translate parameters for
command-line software into a user-friendly web interface.

The graphical web interface and a large amount of high-quality,
community-developed and maintained tools and training materials
enable rapid interactive analyses for novices and expert users alike.

For each step in an analysis, Galaxy captures several metadata
(e.g., tool identifier and version, inputs, and parameters) enabling
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reproducibility. Galaxy also allows users to easily share their work-
flows and data.

Galaxy’s backend architecture can interface with various cloud
and high-performance computing (HPC) environments, thereby
providing the necessary computing resources to run computation-
ally demanding analyses, while the end users only need access to a
web browser.

Galaxy is free, open source software and can be installed locally
or used on more than 120 publicly available servers. Galaxy is
supported by a large community of users and developers. An
important community-maintained resource is the Galaxy Training
Material (available at https://training.galaxyproject.org) [2], which
hosts a wide range of step-by-step hands-on tutorials for common
bioinformatic analysis tasks. In particular, this chapter is based on
the “Reference-based RNA-Seq data analysis” tutorial (https://
training.galaxyproject.org/topics/transcriptomics/tutorials/ref-
based/tutorial.html), and we defer the reader to additional expla-
nations there.

In this chapter we will use a selection of Galaxy tools to show
step-by-step how to find differentially expressed genes, from data
upload to functional enrichment analysis, using real
experimental data.

2 Materials

2.1 RNA-Seq Dataset In the study of [3], the authors identified genes and pathways
regulated by the pasilla (ps) gene (the Drosophila melanogaster
homologue of the mammalian splicing regulators Nova-1 and
Nova-2 proteins) using RNA-Seq data. They depleted the ps gene
in D. melanogaster by RNA interference (RNAi). Total RNA was
then isolated and used to prepare both single-end and paired-end
RNA-Seq libraries for treated (ps-depleted) and untreated samples.
These libraries were sequenced to obtain RNA-Seq reads for each
sample. The RNA-Seq data for the treated and untreated samples
can be compared to identify the effects of the ps gene depletion on
gene expression.

In this chapter, we illustrate the analysis of the gene expression
data step by step using seven of the original datasets:

l Four untreated samples: GSM461176, GSM461177,
GSM461178, GSM461182.

l Three treated samples (ps gene depleted by RNAi):
GSM461179, GSM461180, GSM461181.

In the first part of this chapter, we will use the files for two out
of the seven samples to demonstrate how to calculate read counts
(a measure of the gene expression) from FASTQ (https://en.
wikipedia.org/wiki/FASTQ_format) files.
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2.2 Computational

Resources

The entire analysis described in this article can be conducted effi-
ciently on any Galaxy server which has the required tools and
reference genome; a list can be found in the “Available on these
Galaxies” menu on the “Reference-based RNA-Seq data analy-
sis” tutorial webpage mentioned above. However, to be sure, the
authors recommend using the Galaxy Europe server (https://
usegalaxy.eu).

3 Methods

This chapter provides a detailed workflow for the detection of DE
genes and gene ontologies from raw RNA-Seq data using Galaxy
(Fig. 1). The tutorial starts from quality control of the reads using
FastQC and Cutadapt [4]. The reads are then mapped to a refer-
ence genome using STAR [5] and checked using the Integrative
Genomics Viewer (IGV) [6] and other tools. From the mapped
sequences, the number of reads per annotated genes are counted
using featureCounts [7]. For each step, quality reports are aggre-
gated using MultiQC [8]. DESeq2 [9] is then used on the read
counts to normalize them and extract the differentially expressed
genes.Heatmap2 andVolcano Plot are used to visualize DE genes
and finally, functional enrichment analysis of the DE genes is per-
formed using goseq [10] to extract interesting Gene Ontologies.

3.1 Upload FASTQ

to Galaxy

RNA-Seq analysis usually starts with raw data from the sequencing
machine in FASTQ format. Therefore, we first need to upload the
FASTQ files for two out of the seven samples into Galaxy.

The Galaxy user interface is split up into four main areas:

l The top panel for navigating different modes (Analysis, Work-
flows, Library, Shared Data, User Preferences).

l The left hand side contains a searchable menu, called the Tool-
box, which is used to find and select Tools in the Analysis and
Workflow mode.

l The center panel, whose content changes during the different
parts of an analysis. When preparing to run a Galaxy tool or
workflow, the user can see and change tool parameters, while it
may also be used to show information and metadata for a dataset
or its content.

l The right hand side, called the History, which in the analysis
mode shows the list of datasets uploaded or created by previ-
ously executed and currently executing tools.

Please login or register for a free account at the Galaxy server
you are using to run the tutorial (e.g., https://usegalaxy.eu).
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Hands-on: Data Upload

1. Create a new history for this RNA-Seq exercise:
(a) Click the + icon at the top of the history panel.

(b) Click on Unnamed history.

(c) Write a proper name, for example, Reference-based
RNA-seq data analysis.

2. Import the FASTQ file pairs from the Shared data library:
(a) Go into Shared Data (top panel) then Data Libraries.

(b) Click on GTN—Material then Transcriptomics, Refer-
ence-based RNA-seq data analysis, and https://doi.
org/10.5281/zenodo.1185122.

Fig. 1 Overview of the analysis pipeline used
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(c) In the search box type fastq to see just the FASTQ files.

(d) Select the following files:
l https://zenodo.org/api/files/1d804082-4153-47f1-

a320-4ac261ce091d/GSM461177_1.fastqsanger

l https://zenodo.org/api/files/1d804082-4153-47f1-
a320-4ac261ce091d/GSM461177_2.fastqsanger

l https://zenodo.org/api/files/1d804082-4153-47f1-
a320-4ac261ce091d/GSM461180_1.fastqsanger

l https://zenodo.org/api/files/1d804082-4153-47f1-
a320-4ac261ce091d/GSM461180_2.fastqsanger

(e) Click on the Export to History button near the top and
select as Datasets from the drop-down menu.

(f) In the pop-up window, select the history you want to
import the files to (or create a new one).

(g) Click on Import.

(h) Click the green pop-up box or Analyze Data in the top
panel to move to the analysis page.

3. Rename each dataset according to the sample id (e.g.,
GSM461177_1):
(a) Click on the pencil icon for the dataset to edit its

attributes.

(b) In the central panel, change the Name field.

(c) Click the Save button.

4. Check that the datatype (i.e., format) of each dataset is fas-
tqsanger, not fastq (if needed, click on the dataset name to
expand the box to see). If it is not, please change the datatype
to fastqsanger.
(a) Click on the pencil icon for the dataset to edit its

attributes.

(b) In the central panel, click on the Datatypes tab on
the top.

(c) Select fastqsanger.

(d) Click the Change datatype button.

5. Add to each dataset a tag corresponding to the name of the
sample (#GSM461177 or #GSM461180):
(a) Click on the dataset.

(b) Click on the Edit dataset tags icon.

(c) Add a tag starting with #. Tags starting with # will be
automatically propagated to the outputs of tools using
this dataset.

(d) Check that the tag is appearing below the dataset name.
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The reads are raw data from the sequencing machine without
any preprocessing. They first need to be assessed for their quality.

3.2 Quality Control

and Trimming

During sequencing, errors are introduced, such as incorrect
nucleotides being called. These are due to the technical limitations
of each sequencing platform. Sequencing errors might bias the
analysis and can lead to a misinterpretation of the data. Adapters
may also be present if the reads are longer than the fragments
sequenced and trimming these may improve the number of reads
mapped.

Sequence quality control is therefore an essential first step in
every analysis. We recommend to use tools such as FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
to create a report of sequence quality, MultiQC [8] to aggregate
generated reports, and Cutadapt [4] to improve the quality of
sequences via trimming and filtering (see Note 1 for alternative
tools). Note that to find a tool in Galaxy, you can search for it in
the search box at the top of the tool panel on the left. To run a tool
after selecting the parameters, just click the Execute button on the
tool form.

Hands-on: Quality Control
1. FastQC:

(a) For the “Short read data from your current history” input:
l Click on the Multiple datasets button.

l Select all the input datasets you have uploaded by
keeping the Ctrl (or COMMAND ) key pressed and
clicking on the various datasets.

2. MultiQC with the following parameters to aggregate the
FastQC reports:
(a) In “Results”.

l “Which tool was used generate logs?”: FastQC.

l In “FastQC output”.
– “Type of FastQC output?”: Raw data.

– “FastQC output”: the 4 RawData files (output of
FastQC).

3. Inspect the web page output from MultiQC for each FASTQ
dataset.

The aggregate report shows that everything seems good for
three of the files, but in one file (reverse reads of GSM461180) the
quality decreases quite a lot at the end of the sequences (Fig. 2).

We should trim the reads to get rid of bases that were
sequenced with high uncertainty (i.e. low quality bases) at the
read ends, and also remove reads of overall bad quality.
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Hands-on: Read Trimming and Filtering

1. Cutadapt with the following parameters to trim low quality
sequences:
(a) “Single-end or Paired-end reads?”: Paired-end.

l “FASTQ/A file #1”: both fastqsanger datasets ending
with “_1”, selected using the multiple datasets option.

l “FASTQ/A file #2”: both fastqsanger datasets ending
with “_2”, selected using the multiple datasets option.

(b) In the “Filter Options” section:
l “Minimum length”: 20

(c) In the “Read Modification Options” section:
l “Quality cutoff”: 20

(d) In the “Output Options” section:
l “Report”: Yes.

2. Inspect the generated Report datasets in your history.

For GSM461177, 5,072,810 bp has been trimmed for the
forward reads (read 1) and 8,648,619 bp for the reverse (read 2)
because of quality. For GSM461180, 10,224,537 bp for forward
and 51,746,850 bp for the reverse. It is not a surprise: we saw that
at the end of the reads the quality was dropping more for the
reverse reads than for the forward reads, especially for
GSM461180.

3.3 Mapping To make sense of the reads, we need to first figure out where the
sequences originated from in the genome, so we can then deter-
mine to which genes they belong. When a reference genome for the
organism is available, this process is known as aligning or
“mapping” reads to the reference.

In this study, the authors usedD. melanogaster cells. We should
map the quality-controlled sequences to the reference genome of
D. melanogaster [11], i.e. the set of nucleic acid sequences assem-
bled as a representative example of the species’ genetic material.

With eukaryotic transcriptomes most reads originate from pro-
cessed mRNAs lacking introns, therefore they cannot be simply
mapped back to the genome as we normally do for DNA data
(Fig. 3). Instead, several splice-aware mappers (e.g., TopHat [12],
HISAT2 [13, 14], STAR [5]) have been developed to efficiently
map transcript-derived reads against a reference genome. Here we
will map our reads to the D. melanogaster genome using STAR.

Fig. 3 The types of RNA-Seq reads (adapted from Fig. 1a from [13]), reads that mapped entirely within an exon
(in red), reads spanning over two exons (in blue), read spanning over more than two exons (in purple)
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Hands-on: Spliced Mapping

1. Import the Ensembl gene annotation for D. melanogaster
(Drosophila_melanogaster.BDGP6.87.gtf) from the Shared
Data library into your current Galaxy history.
(a) Rename the dataset if necessary.

(b) Verify that the datatype is gtf and not gff, and that the
database is dm6. If not, click on the pencil icon and edit its
attributes.

2. RNA STAR to map the reads from both samples on the
reference genome:
(a) “Single-end or paired-end reads”: Paired-end

(as individual datasets)
l “RNA-Seq FASTQ/FASTA file, forward reads”: “Read

1 Output” for both samples (outputs of Cutadapt),
selected using the multiple datasets option.

l “RNA-Seq FASTQ/FASTA file, reverse reads”: “Read
2 Output” for both samples (outputs of Cutadapt),
selected using the multiple datasets option.

(b) “Custom or built-in reference genome”: Use a built-in
index.
l “Reference genome with or without an annotation”:

“use genome reference without builtin gene-model”.
– “Select reference genome”: Fly (Drosophila Melano-

gaster): “dm6 Full”.

– “Gene model (gff3,gtf) file for splice junctions”: the
imported Drosophila_melanogaster.BDGP6.87.
gtf.

– “Length of the genomic sequence around annotated
junctions”: 36 (This parameter should be length of
reads—1).

3. MultiQC to aggregate the STAR logs:
(a) In “Results”.

l “Which tool was used generate logs?”: STAR.

l In “STAR output”.
– “Type of STAR output?”: Log.

– “STAR output”: log files (outputs of RNA STAR).

TheMultiQC report reveals that around 80% of reads for both
samples are mapped exactly once to the reference genome. Percen-
tages below 70% should be investigated for potential contamina-
tion, so here we can safely proceed with the analysis. Both samples
have a low (less than 10%) percentage of reads that mapped to
multiple locations on the reference genome. This is in the normal
range for Illumina short-read sequencing, but the range expected
may be lower for long-read sequencing datasets that can span larger
repeated regions in the reference sequence.
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The main output of STAR is a BAM (https://en.wikipedia.
org/wiki/Binary_Alignment_Map) file. The BAM files contain
mapping information for all our reads, making it difficult to inspect
and explore in text format. A powerful tool to visualize the content
of BAM files is the Integrative Genomics Viewer (IGV).

Hands-on: Inspection of Mapping Results

1. Install IGV from https://software.broadinstitute.org/soft
ware/igv/download (if not already installed).

2. Start IGV locally.

3. Expand the mapped.bam file (output of RNA STAR) for
GSM461177.

4. Click on the local in display with IGV local D. melanogaster
(dm6) to load the reads into the IGV browser.

5. IGV: Zoom to chr4:540,000–560,000 (Chromosome
4 between 540 kb to 560 kb) (Fig. 4a).

6. IGV: Inspect the splice junctions using a Sashimi plot
(Fig. 4b).
(a) Right click on the BAM file (in IGV).

(b) Select Sashimi Plot from the menu.

After the mapping, we have now the information on where the
reads are located on the reference genome and how well they were
mapped (see Note 2 for more quality checks). The next step in
RNA-Seq data analysis is quantification of the number of reads

Fig. 4 Inspection of BAM file with IGV on chromosome 4. (a) On the top, the coverage plot shows the sum of
mapped reads at each position as grey peaks. In the middle, each read is displayed where it maps. The blue
lines indicate the junction events (or splice sites), that is, reads that are mapped across an intron. On the
bottom, the reference genome with its genes is represented. (b) Sashimi plot showing the coverage in red with
the arcs representing the splice junctions. The numbers refer to the number of reads spanning the junctions.
On the bottom, the different groups of linked boxes represent the different transcripts from the genes at this
location that are present in the GTF file
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mapped to genomic features (genes, transcripts, exons, . . .). Here
we will focus on the genes as we would like to identify the ones that
are differentially expressed because of the pasilla gene knockdown.

3.4 Count

the Number of Reads

per Annotated Genes

To compare the expression of single genes between different con-
ditions (e.g., with or without ps depletion), an essential first step is
to quantify the number of reads per gene, or more specifically the
number of reads mapping to the exons of each gene. A fast and
efficient tool for this task is featureCounts [7] (see Note 3 for
alternative tools).

Hands-on: Counting the Number of Reads per Annotated Gene

1. featureCounts to count the number of reads per gene:
(a) “Alignment file”: mapped.bam files (outputs of RNA

STAR).

(b) “Specify strand information”: Unstranded (see Note 4).

(c) “Gene annotation file”: in your history.
l “Gene annotation file”: Drosophila_melanogaster.

BDGP6.87.gtf.

(d) “Output format”: Gene-ID “\t” read-count (MultiQC/
DESeq2/edgeR/limma-voom compatible).

(e) “Create gene-length file”: Yes.

(f) In “Options for paired-end reads”:
l “Count fragments instead of reads”: Enabled; frag-

ments (or templates) will be counted instead of reads.

(g) In “Advanced options”:
l “GFF feature type filter”: exon.

l “GFF gene identifier”: gene_id.

l “Allow reads to map to multiple features”.

l “Minimum mapping quality per read”: 10

2. MultiQC to aggregate the report:
(a) In “Results”:

l “Which tool was used generate logs?”: featureCounts.

l “Output of FeatureCounts”: Summary files (outputs of
featureCounts).

The main output of featureCounts is a table with the number
of reads (or fragments in the case of paired-end reads) mapped to
each gene (in rows, with their ID in the first column) in the
provided annotation. FeatureCounts can also generate a file with
the length of each gene, a file we will need later for the functional
enrichment analysis.
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3.5 Identification

of Differentially

Expressed Genes

To be able to identify differential gene expression induced by ps
depletion, all datasets (three treated and four untreated) must be
analyzed following the same procedure. To save time, we have run
the previous steps for you and generated seven files with the counts
for each gene of D. melanogaster for each sample.

Hands-on: Import all Count Files

1. Create a new empty history.

2. Import the seven count files from the same Shared Data library:
GSM461176_untreat_single.counts, GSM461177_untreat_-
paired.counts, GSM461178_untreat_paired.counts,
GSM461179_treat_single.counts, GSM461180_treat_paired.
counts, GSM461181_treat_paired.counts, GSM461182_un-
treat_single.counts.

3. Rename the datasets to the names above (i.e., remove the path
prefix).

We would like now to calculate the extent of differential gene
expression. DESeq2 [9] is a tool for differential analysis of count
data which uses negative binomial generalized linear models (see
Note 5 for alternative tools). DESeq2 takes read count files from
different samples, combines them into a big table (with genes in the
rows and samples in the columns) and applies normalization for
sequencing depth and library composition. Gene length normali-
zation does not need to be accounted for because we are comparing
the counts between sample groups for the same gene.

DESeq2 also runs the differential gene expression analysis,
whose two basic tasks are as follows:

l Estimate the biological variance using the replicates for each
condition (see Note 6 about replicates).

l Estimate the significance of expression differences between any
two conditions.

Multiple factors can be incorporated in the analysis describing
known sources of variation (e.g., treatment, tissue type, gender,
batches), with two or more levels representing the conditions for
each factor. After normalization we can compare the response of the
expression of any gene to the presence of different levels of a factor
in a statistically reliable way.

In our example, we have samples with two varying factors that
can contribute to differences in gene expression: Treatment (either
treated or untreated) and Sequencing type (paired-end or single-
end). Here, treatment is the primary factor that we are interested
in. The sequencing type is further information we know about the
data that might affect the analysis. Multifactor analysis allows us to
assess the effect of the treatment, while taking the sequencing type
into account too.
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Hands-on: Determine Differentially Expressed Features

1. DESeq2 with the following parameters:
(a) “how”: Select datasets per level.

l In “1: Factor”.

– “Specify a factor name”: Treatment

– In “Factor level”:
1. In “1: Factor level”:

(a) “Specify a factor level”: treated.
(b) “Counts file(s)”: the three gene count files with

“treat” in their name.

2. In “2: Factor level”:
(a) “Specify a factor level”: untreated
(b) “Counts file(s)”: the four gene count files with

“untreat” in their name.

l Click on “Insert Factor” (not on “Insert Factor level”).

l In “2: Factor”.
– “Specify a factor name”: Sequencing

– In “Factor level”:
1. In “1: Factor level”:

(a) “Specify a factor level”: PE
(b) “Counts file(s)”: the four gene count files with

“paired” in their name.

2. In “2: Factor level”:
(a) “Specify a factor level”: SE
(b) “Counts file(s)”: the three gene count files with

“single” in their name.

(b) “Files have header?”: No.

(c) “Visualising the analysis results”: Yes.

(d) “Output normalized counts table”: Yes.

DESeq2 generated three outputs. The first output is the table
with the normalized counts for each gene (rows) in the samples
(columns). The second output is a graphical summary of the
results, useful to evaluate the quality of the experiment:

l Plot with the first two dimensions from a principal component
analysis (PCA) run on the normalized counts of the samples
(Fig. 5a). It shows the samples in the 2D plane spanned by
their first two principal components. Each replicate is plotted
as an individual data point. This type of plot is useful for visua-
lizing the overall effect of experimental covariates and batch
effects.

l Heatmap of the sample-to-sample distance matrix (with cluster-
ing) based on the normalized counts (Fig. 5b). The heatmap
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gives an overview of similarities and dissimilarities between sam-
ples: the color represents the distance between the samples. Dark
blue means shorter distance, that is, closer samples given the
normalized counts.

l Dispersion estimates: gene-wise estimates (black), the fitted
values (red), and the final maximum a posteriori estimates used
in testing (blue). This dispersion plot is typical, with the final
estimates shrunk from the gene-wise estimates toward the fitted
estimates. Some gene-wise estimates are flagged as outliers and
not shrunk toward the fitted value. The amount of shrinkage can
be more or less than seen here, depending on the sample size,
the number of coefficients, the row mean and the variability of
the gene-wise estimates.

l Histogram of p-values for the genes in the comparison between
the two levels of the first factor.

l MA plot. It displays the global view of the relationship between
the expression change of conditions (log ratios, M), the average
expression strength of the genes (average mean, A), and the
ability of the algorithm to detect differential gene expression.
The genes that passed the significance threshold (adjusted p-
value <0.1) are colored in red.

Fig. 5 Graphical summary of DESeq2 results. (a) Plot with the first 2 dimensions from a principal component
analysis (PCA) run on the normalized counts of the samples. The first dimension is separating the treated
samples from the untreated samples and the second dimension the single-end datasets from the paired-end
datasets. The datasets are grouped following the levels of the two factors. No hidden effect seems to be
present on the data. If there is unwanted variation present in the data (e.g., batch effects) it is always
recommended to correct for this, which can be accommodated in DESeq2 by including in the design any
known batch variables. (b) Heatmap of the sample-to-sample distance matrix (with clustering) based on the
normalized counts. The samples are first grouped by the treatment (the first factor) and secondly by the
sequencing type (the second factor), as in the PCA plot
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The main output of DESeq2 is a summary file with the follow-
ing values for each gene:

l Gene identifier.

l Mean normalized counts, averaged overall samples from both
conditions.

l Fold change in log2 (logarithm base 2). The log2 fold changes
are based on the primary factor level 1 vs factor level 2, hence the
input order of factor levels is important. Here, DESeq2 com-
putes fold changes of ‘treated’ samples against ‘untreated’ from
the first factor ‘Treatment’, i.e. the values correspond to up- or
downregulation of genes in treated samples (see Note 7 for
details about other factors and levels comparisons).

l Standard error estimate for the log2 fold change estimate.

l Wald statistic.

l p-Value for the statistical significance of this change,

l p-Value adjusted for multiple testing with the Benjamini–Hoch-
berg procedure, which controls the false discovery rate (FDR).

For example, the gene FBgn0003360 is differentially expressed
because of the treatment: it has a significant adjusted p-value
(4.0 � 10�178, much less than 0.05) and it is less expressed (� in
the log2FC column) in treated samples compared to untreated
samples, by a factor ~8 (2|log2FC|).

Some of the tools we will use in the rest of the chapter require a
header row in the DESeq2 result file so we will add column names
before going further.

Hands-on: Add Column Names

1. Create a new file from the following (header line of the
DESeq2 output) by pasting the line below into the Galaxy
upload file Paste/Fetch data box:

GeneID Base-mean log2(FC) StdErr Wald-Stats P-value
P-adj

(a) In Type, select “Tabular”.

(b) In Settings, click on “Convert spaces to tabs”.

2. Concatenate datasets to add the header line to the annotated
genes.
(a) “Concatenate”: the Pasted entry dataset.

(b) “Dataset”: the DESeq2 result file.

We would like to extract the most differentially expressed genes
due to the treatment and with an absolute fold change >2 (equiva-
lent to an absolute log2FC > 1).
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Hands-on: Extract the most Differentially Expressed Genes

1. Filter data on any column using simple expressions to
extract genes with a significant change in gene expression
(adjusted p-value below 0.05) between treated and untreated
samples:
(a) “Filter”: output of Concatenate.

(b) “With following condition”: c7 < 0.05

(c) “Number of header lines to skip”: 1

2. Rename the output “Genes with significant adj p-value”.

3. Filter data on any column using simple expressions to
extract genes with an absolute fold change (FC) > 2.
(a) “Filter”: Genes with significant adj p-value.

(b) “With following condition”: abs(c3) > 1

(c) “Number of header lines to skip”: 1

We now have a table with 131 lines corresponding to the most
differentially expressed genes. For each gene, we have its ID, its
mean normalized counts (averaged overall samples from both con-
ditions), its log2FC and other information.

The ID for each gene is something like FBgn0003360, which is
an ID from the corresponding database, here Flybase [15]. These
IDs are unique but sometimes we prefer to have the gene symbols,
even if they may not reference a unique gene (e.g., duplicated after
reannotation), as they may hint already to a function or they help
you to search for desired candidates. We would also like to display
the location of these genes on the genome. We can extract such
information from the annotation file which we used for mapping
and counting.

Hands-on: Annotate the Differentially Expressed Genes

1. Using View all histories, drag and drop the Ensembl gene
annotation for D. melanogaster (Drosophila_melanogaster.
BDGP6.87.gtf) from the previous history into this history.

2. Annotate DESeq2/DEXSeq output tables with:
(a) “Tabular output of DESeq2/edgeR/limma/DEXSeq”:

output of the last Filter.

(b) “Input file type”: DESeq2/edgeR/limma.

(c) “Reference annotation in GFF/GTF format”: Drosophi-
la_melanogaster.BDGP6.87.gtf.

The generated output is an extension of the previous file:
(1) Gene identifiers, (2) Mean normalized counts overall samples,
(3) Log2 fold change, (4) Standard error estimate for the log2 fold
change estimate, (5) Wald statistic, (6) p-value for the Wald statis-
tic, (7) p-value adjusted for multiple testing with the Benjamini–
Hochberg procedure for the Wald statistic, (8) Chromosome,
(9) Start, (10) End, (11) Strand, (12) Feature, (13) Gene name.
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With this extra information, we can see that FBgn0025111,
one of the most significantly overexpressed genes, is located on the
reverse strand of chromosome X, between 10,778,953 bp and
10,786,907 bp, and is also named Ant2, that is, that it corresponds
to adenine nucleotide translocase 2.

3.6 Visualization We can visualize the differentially expressed results with volcano
plots and heatmaps.

We can generate a heatmap of expression for the top differen-
tially expressed genes in the different samples. To do this we need
the normalized counts for these genes. To extract the normalized
counts for the interesting genes, we join the normalized count table
generated by DESeq2 with the table of the top differentially
expressed genes that we just generated. We can then use heatmap2
to create the heatmap. In heatmap2 we will select to scale the data
by row (genes), which converts the expression values to z-scores
and prevents highly expressed genes from dominating the plot.
However, note that heatmap2 performs clustering before scaling,
so if you want to view the clustering after scaling, use the
Table Compute tool to compute Z-scores before creating the
heatmap.

Hands-on: Create an Expression Heatmap for the Top Differentially
Expressed Genes

1. Join two Datasets side by side on a specified field to
keep only the most differentially expressed genes in the
DESeq2 normalized counts file:
(a) “Join”: the DESeq2 normalized counts file.

(b) “using column”: Column: 1.

(c) “with”: output from Annotate DESeq2/DEXSeq.

(d) “and column”: Column: 1.

(e) “Keep lines of first input that do not join with second
input”: No.

(f) “Keep the header lines”: Yes.

2. Cut columns from a table to extract the columns with the
gene IDs and normalized counts:
(a) “Cut columns”: c1-c8

(b) “Delimited by”: Tab.

(c) “From”: the output of the previous Join.

3. heatmap2 to create a heatmap:
(a) “Input should have column headers - these will be the col-

umns that are plotted”: the file from the previous Cut.

(b) “Plot title”: Top differentially expressed genes

(c) “Data transformation”: Log2(value) transform my data.
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(d) “Enable data clustering”: Yes.

(e) “Clustering columns and rows”: Cluster rows and
columns.

(f) “Labeling columns and rows”: Label columns and
not rows.

(g) “Coloring groups”: Blue to white to red.

(h) “Data scaling”: Scale my data by row.

Based on the normalized counts for the 130 top differentially
expressed genes, the samples (in columns) are clustered primarily by
treatment (Fig. 6a). We can see that the samples within each treat-
ment type (treated and untreated) tend to have similar expression
patterns for these genes (low expression is blue and high expression
is red), which is good. We can see also clusters of genes based on
their expression.

Volcano plots are commonly used to display the results of
RNA-Seq or other omics experiments. A volcano plot is a type of
scatterplot that shows statistical significance (P value) versus mag-
nitude of change (fold change). It enables quick visual
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Fig. 6 Visualization of the expression results. (a) Heatmap of normalized expression (z-scores) for the top
130 differentially expressed genes in the 7 samples. Blue indicates relatively low expression in a sample, red
indicates high. (b) Volcano plot for the comparison between treated and untreated samples, showing all genes,
with log2FC on the X-axis and�log10 of the P-value on the Y-axis. The points in grey correspond to genes that
are not significantly differentially expressed (using a threshold of 0.05 on the adjusted p-value and absolute
log2FC of 1), in red the significantly overexpressed genes (log2FC > 1) and in blue the significantly under-
expressed genes (log2FC < �1)
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identification of genes with large fold changes that are also statisti-
cally significant. These may be the most biologically significant
genes. In a volcano plot, the most upregulated genes are toward
the right, the most downregulated genes are toward the left, and
the most statistically significant genes are toward the top. We will
make a volcano plot showing the names of the top ten most
differentially expressed genes.

Hands-on: Creating a Volcano Plot
1. Filter data on any column using simple expressions to

remove genes with NAs from the DESeq2 result:
(a) “Filter”: output from Concatenate.

(b) “With following condition”: c7!¼'NA'

(c) “Number of header lines to skip”: 1

2. Join two Datasets side by side on a specified field to add the
gene names for the most differentially expressed genes to the
DESeq2 results file:
(a) “Join”: output from the previous Filter.

(b) “using column”: Column: 1.

(c) “with”: output from Annotate DESeq2/DEXSeq.

(d) “and column”: Column: 1.

(e) “Keep lines of first input that do not join with second
input”: Yes.

(f) “Keep the header lines”: Yes.

3. Volcano Plot to create a volcano plot:
(a) “Specify an input file”: output of the previous Join.

(b) “FDR (adjusted P value)”: Column: 7.

(c) “P value (raw)”: Column: 6.

(d) “Log Fold Change”: Column: 3.

(e) “Labels”: Column: 20.

(f) “Significance threshold”: 0.05

(g) “LogFC threshold to colour”: 1.0

(h) “Points to label”: Significant.
l “Only label top most significant”: 10

(i) In “Plot options”:
l “Label boxes”: No.

Figure. 6b shows a volcano plot for this dataset. The signifi-
cantly differentially expressed genes (using thresholds of adjusted p-
value 0.05 and absolute log2FC of 1) are colored red if they are
upregulated and blue if they are downregulated. The top ten most
significantly differentially expressed genes by P value are labeled. In
this plot we can see that the most significantly upregulated gene is
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Ant2, the most downregulated is Kal1, and that the top ten genes
are mostly downregulated (8/10 genes).

3.7 Functional

Enrichment Analysis

We have extracted genes that are differentially expressed in treated
(ps gene-depleted) samples compared to untreated samples. Now,
we would like to know if the differentially expressed genes are
enriched transcripts of genes which belong to more common or
specific categories in order to identify biological functions that
might be impacted. Gene Ontology (GO) analysis is widely used
to reduce complexity and highlight biological processes in genome-
wide expression studies. To perform the GO analysis of RNA-Seq
data, we will use the goseq tool [10]. goseq provides methods for
performing GO analysis of RNA-Seq data while taking gene length
bias into account. Goseq could also be applied to other category-
based tests of RNA-Seq data, such as KEGG pathway analysis.

goseq needs two files as inputs:

l A tabular file with differentially expressed genes from all genes
assayed in the RNA-Seq experiment with two columns: the Gene
IDs (unique within the file), in uppercase letters; a Boolean
indicating whether the gene is differentially expressed or not
(“True” if differentially expressed and “False” if not).

l A file with information about the length of a gene to correct for
potential length bias in differentially expressed genes.

Hands-on: Prepare the Datasets for Goseq
1. Compute an expression on every row with.

(a) “Add expression”: bool(c7 < 0.05)

(b) “as a new column to”: the DESeq2 result file.

2. Cut with.
(a) “Cut columns”: c1,c8

(b) “Delimited by”: Tab.

(c) “From”: the output of the Compute.

3. Change Case with.
(a) “From”: the output of the previous Cut.

(b) “Change case of columns”: c1

(c) “Delimited by”: Tab.

(d) “To”: Upper case.

4. Rename the output to “Gene IDs and differentially
expression”.

5. Drag and drop one of the feature length datasets generated by
featureCounts into this history using the View all histories.

6. Change Case with.
(a) “From”: the feature lengths (output of featureCounts).

386 Bérénice Batut et al.



(b) “Change case of columns”: c1

(c) “Delimited by”: Tab.

(d) “To”: Upper case.

7. Rename the output to “Gene IDs and length”.

We now have the two required input files for goseq.

Hands-on: Perform GO Analysis

1. goseq with.
(a) “Differentially expressed genes file”: Gene IDs and differ-

entially expression.

(b) “Gene lengths file”: Gene IDs and length.

(c) “Gene categories”: Get categories.
l “Select a genome to use”: Fruit fly (dm6).

l “Select Gene ID format”: Ensembl Gene ID.

l “Select one or more categories”: GO: Cellular Compo-
nent, GO: Biological Process, GO: Molecular
Function.

(d) In “Output Options”.
l “Output Top GO terms plot?”: Yes.

l “Extract the DE genes for the categories (GO/KEGG
terms)?”: Yes.

The main output of goseq is a table (“Ranked category list -
Wallenius method”) with the following columns for each GO term:

1. GO category (“category”).

2. p-Value for overrepresentation of the term in the differentially
expressed genes (“over_rep_pval”).

3. p-Value for underrepresentation of the term in the differentially
expressed genes (under_rep_pval).

4. Number of differentially expressed genes in this category
(“numDEInCat”).

5. Number of genes in this category (“numInCat”).

6. Details about the term.

7. Ontology with MF for “Molecular Function” (molecular activ-
ities of gene products), CC for “Cellular Component” (where
gene products are active), BP for“Biological Process” (path-
ways and larger processes made up of the activities of multiple
gene products).

8. p-Value for overrepresentation of the term in the differentially
expressed genes, adjusted for multiple testing with the Benja-
mini–Hochberg procedure (“p.adjust.over_represented”).
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9. p-Value for underrepresentation of the term in the differentially
expressed genes, adjusted for multiple testing with the Benja-
mini–Hochberg procedure (“p.adjust.under_represented”).

From this table we can extract the 31 overrepresented GO
terms (using the Filter tool on column 8) and the 83 underrepre-
sented terms (using the Filter tool on column 9), and then group
them (using Group data tool on column 7 and count on column
1) to identify that over the 31 overrepresented GO terms, 20 are
BP, 3 CC, and 8 MF.

goseq generates also a graph with the top ten overrepresented
GO terms and a table with differentially expressed genes (from the
list we provided) associated to the GO terms (DE genes for cate-
gories (GO/KEGG terms)).

In this chapter, we covered only GO enrichment analysis with
goseq, but other gene set enrichment analysis can be done with
Galaxy (see Note 8).

3.8 Sharing

the Results

Using Galaxy to perform this analysis makes it is both reusable and
shareable. In fact, it is possible to simply extract a workflow from a
Galaxy history that describes each step of the analysis (tool with
parameters used, connections to previous and following steps).
This workflow can then be applied on the same or different data,
guaranteeing reproducibility.

Moreover, Galaxy histories and workflows can be effortlessly
shared with other selected users (via their Galaxy user account or a
link), or made publicly available to anyone. See the Galaxy 101 tuto-
rial (https://training.galaxyproject.org/training-material/topics/
introduction/tutorials/galaxy-intro-101/tutorial.html) for more
details.

4 Conclusion

In this tutorial, we have used the Galaxy platform to perform a
complex reference-based RNA-Seq analysis through a web interface
in a reproducible and easily shareable way. We extracted meaningful
information from the RNA sequencing data, such as which genes
are up or downregulated by the depletion of the pasilla gene, and
also which GO terms are enriched.

5 Notes

1. As alternative to Cutadapt, theTrimGalore! orTrimmomatic
tools can be used.
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2. In addition to checking the mapping percentage and quick
visual check using IGV, the quality of the data and mapping
can be checked further:
(a) Duplicate reads: Duplicate reads can come from highly

expressed genes, therefore they are usually kept in
RNA-Seq differential expression analysis. But a high per-
centage of duplicates may indicate an issue, for example,
overamplification during PCR of low complexity library.
MarkDuplicates from the Picard suite (http://bro
adinstitute.github.io/picard/) can examine aligned
records from a BAM file to locate duplicate reads, that is,
reads mapping to the same location (based on the start
position of the mapping). In general, up to 50% of dupli-
cation can be considered normal to obtain. So both our
samples are good.

(b) Number of reads mapped to each chromosome: To assess the
sample quality (e.g., excess of mitochondrial contamina-
tion), check the sex of samples, or see if any chromosome
have highly expressed genes, we can check the numbers of
reads mapped to each chromosome using IdxStats from
the Samtools suite.

(c) Gene body coverage: The gene body is the different regions
of a gene. It is important to check if reads coverage is
uniform over gene body or if there is any 50–30 bias. For
example, a bias toward the 50 end of genes could indicate
degradation of the RNA. Alternatively, a 30 bias could
indicate that the data is from a 30 assay. To assess this, we
can use the Gene Body Coverage tool from the RSeQC
tool suite [16]. This tool scales all transcripts to
100 nucleotides (using a provided annotation file) and
calculates the number of reads covering each nucleotide
position.

(d) Read distribution across features: With RNA-Seq data, we
expect most reads to map to exons rather than introns or
intergenic regions. Before going further in counting and
differential expression analysis, it may be interesting to
check the distribution of reads across known gene features
(exons, CDS, 50 UTR, 30 UTR, introns, intergenic
regions). For example, a high number of reads mapping
to intergenic regions may indicate the presence of DNA
contamination. We can use the Read Distribution tool
from the RSeQC tool suite, which uses the annotation file
to identify the position of the different gene features.

3. As an alternative to featureCounts, the HTSeq-count [17]
tool can be used.

4. RNAs that are typically targeted in RNA-Seq experiments are
single stranded (e.g., mRNAs) and thus have polarity (50 and 30
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ends that are functionally distinct). During a typical RNA-Seq
experiment, the information about strandness is lost after both
strands of cDNA are synthesized, size selected, and converted
into a sequencing library. However, this information can be
quite useful for the read counting step, especially for reads
located on the overlap of two genes that are on different
strands.

Some library preparation protocols create so called
stranded RNA-Seq libraries that preserve the strand informa-
tion. This information can be estimated using a tool called
Infer Experiment from the RSeQC [16] tool suite. This tool
takes the BAM files from the mapping, selects a subsample of
the reads and compares their genome coordinates and strands
with those of the reference gene model (from an annotation
file). Based on the strand of the genes, it can gauge whether
sequencing is strand-specific, and if so, how reads are stranded
(forward or reverse).

5. Alternative tools that could be used instead of DESeq2 are
edgeR and limma-voom.

6. The expression analysis is estimated from read counts and
attempts are made to correct for variability in measurements
using replicates, which are absolutely essential for accurate
results. For your own analysis, we advise you to use at least
3, but preferably 5, biological replicates per condition. It is
possible to have different numbers of replicates per condition.

A technical replicate is an experiment which is performed
once but measured several times (e.g., multiple sequencing of
the same library). A biological replicate is an experiment per-
formed (and also measured) several times.

In our data, we have four biological replicates (here called
samples) without treatment and three biological replicates with
treatment (pasilla gene depleted by RNAi).

We recommend to combine the count tables for different
technical replicates (but not for biological replicates) before a
differential expression analysis.

7. DESeq2 in Galaxy returns the comparison between the differ-
ent levels for the first factor, after correction for the variability
due to the second factor. In our current case, treated against
untreated for any sequencing type. To compare sequencing
types, we should run DESeq2 again switching factors: factor
1 (treatment) becomes factor 2 and factor 2 (sequencing)
becomes factor 1.

To compare the effect of two factors, for example to see if
there is a difference in the treatment effect detected with
paired vs. single end data, we should run DESeq2 another
time but with only one factor with the following four levels:
treated-PE, untreated-PE, treated-SE, untreated-SE. By
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selecting “Output all levels vs all levels of primary factor (use
when you have >2 levels for primary factor)” to “Yes,” we can
then compare treated-PE vs treated-SE.

8. goseq can also be used to identify interesting pathways by
replacing GO terms with KEGG pathways. The KEGG data-
base is a collection of pathway maps representing the current
knowledge on the molecular interaction, reaction and relation
networks. A map can integrate many entities including genes,
proteins, RNAs, chemical compounds, glycans, and chemical
reactions, as well as disease genes and drug targets.

From the goseq output, we could investigate which genes
are involved in which pathways by looking at the second file
generated by goseq. This can be less cumbersome if the path-
ways are represented as a diagram: Pathview [18] can help to
generate automatically pathway representation with informa-
tion about the genes (e.g., expression).

Other gene set enrichment tools available for Galaxy
include fgsea [19] and EGSEA [20]. fgsea (fast gene set
enrichment analysis) takes a ranked list of genes and some
gene sets to test, such as from the Molecular Signatures Data-
base (MSigDB), and identifies enriched gene sets. It produces a
table of enriched gene sets and barcode plots showing the
ranking of the gene set. MSigDB only provide gene sets for
human, but if you are using another species you could first map
the nonhuman gene ids to human. EGSEA (Ensemble of Gene
Set Enrichment Analyses) is another gene set enrichment tool
that takes a table of counts and built-in gene sets, including
MSigDB, and runs a number of enrichment algorithms. It
produces a table of enriched gene sets and different types of
plots, such as KEGG diagrams. EGSEA provides built-in gene
sets for human, mouse and rat, including those from MSigDB.
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