Skip to main content

Cell-Penetrating Peptides Delivering siRNAs: An Overview

  • Protocol
  • First Online:
Design and Delivery of SiRNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2282))

Abstract

Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeong C, Yoo J, Lee D et al (2016) A branched TAT cell-penetrating peptide as a novel delivery carrier for the efficient gene transfection. Biomater Res 20(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–860

    Article  CAS  PubMed  Google Scholar 

  3. Derakhshankhah H, Jafari S (2018) Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomed Pharmacother 108:1090–1096

    Article  CAS  PubMed  Google Scholar 

  4. Ezzat K, EL Andaloussi S, Zaghloul EM et al (2011) PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 39:5284–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh T, Murthy ASN, Yang H-J et al (2018) Versatility of cell-penetrating peptides for intracellular delivery of siRNA. Drug Deliv 25:2005–2015

    Article  CAS  PubMed Central  Google Scholar 

  6. Munyendo WL, Lv H, Benza-Ingoula H et al (2012) Cell penetrating peptides in the delivery of biopharmaceuticals. cell penetrating peptides in the delivery of biopharmaceuticals. Biomolecules 2:187–202

    Google Scholar 

  7. Najjar K, Erazo-Oliveras A, Brock DJ et al (2017) An l- to d-amino acid conversion in an endosomolytic analog of the cell-penetrating peptide TAT influences proteolytic stability, endocytic uptake, and endosomal escape. J Biol Chem 292(3):847–886

    Article  CAS  PubMed  Google Scholar 

  8. Lindgren M, Langel Ü (2011) Classes and prediction of cell-penetrating peptides. In: Langel Ü (ed) Cell-penetrating peptides: methods and protocols. Humana Press, Totowa, NJ, pp 3–19

    Chapter  Google Scholar 

  9. Osman G, Rodriguez J, Chan SY et al (2018) PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J Control Release 285:35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Habault J, Poyet J-L (2019) Recent advances in cell penetrating peptide-based anticancer therapies. Molecules 24:927

    Article  PubMed Central  CAS  Google Scholar 

  11. Porosk L, Arukuusk P, Põhako K et al (2019) Enhancement of siRNA transfection by the optimization of fatty acid length and histidine content in the CPP. Biomater Sci 7:4363

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Li Y, Wang X et al (2015) Fatty acid modified octa-arginine for delivery of siRNA. Int J Pharm 495:527–535

    Article  CAS  PubMed  Google Scholar 

  13. Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao K, Zhao G-M, Wu D et al (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    Article  CAS  PubMed  Google Scholar 

  15. Guo J, Cheng WP, Gu J et al (2012) Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci 45:521–532

    Article  CAS  PubMed  Google Scholar 

  16. Guidotti G, Brambilla L, Rossi D (2017) Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 38:406–424

    Article  CAS  PubMed  Google Scholar 

  17. Järver P, Langel K, El-Andaloussi S et al (2007) Applications of cell-penetrating peptides in regulation of gene expression. Biochem Soc Trans 35:770–774

    Article  PubMed  Google Scholar 

  18. Henriques ST, Costa J, Castanho MARB (2005) Translocation of β-galactosidase mediated by the cell-penetrating peptide Pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry 44:10189–10198

    Article  PubMed  CAS  Google Scholar 

  19. Vives E (2005) Present and future of cell-penetrating peptide mediated delivery systems: “is the Trojan horse too wild to go only to Troy?”. J Control Release 109:77–85

    Article  CAS  PubMed  Google Scholar 

  20. Shukla RS, Qin B, Cheng K (2014) Peptides used in the delivery of small noncoding RNA. Mol Pharm 11:3395–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka K, Kanazawa T, Ogawa T et al (2010) Disulfide crosslinked stearoyl carrier peptides containing arginine and histidine enhance siRNA uptake and gene silencing. Int J Pharm 398:219–224

    Article  CAS  PubMed  Google Scholar 

  22. Sánchez-Navarro M, Teixidó M, Giralt E (2017) Jumping hurdles: peptides able to overcome biological barriers. Acc Chem Res 50:1847–1854

    Article  PubMed  CAS  Google Scholar 

  23. Ziegler A (2008) Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 60:580–597

    Article  CAS  PubMed  Google Scholar 

  24. Pooga M, Langel Ü (2015) Classes of cell-penetrating peptides. In: Langel Ü (ed) Cell-penetrating peptides: methods and protocols. Springer, New York, NY, pp 3–28

    Chapter  Google Scholar 

  25. Konate K, Crombez L, Deshayes S et al (2010) Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery. Biochemistry 49:3393–3402

    Article  CAS  PubMed  Google Scholar 

  26. Agrawal P, Bhalla S, Usmani SS et al (2016) CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res 44:D1098–D1103

    Article  CAS  PubMed  Google Scholar 

  27. Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18:385–393

    Article  CAS  PubMed  Google Scholar 

  28. Rothbard JB, Garlington S, Lin Q et al (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6:1253–1257

    Article  CAS  PubMed  Google Scholar 

  29. Tripathi PP, Arami H, Banga I et al (2018) Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget 9:37252–37267

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pujals S, Fernández-Carneado J, Ludevid MD et al (2008) D-SAP: a new, noncytotoxic, and fully protease resistant cell-penetrating peptide. ChemMedChem 3:296–301

    Article  CAS  PubMed  Google Scholar 

  31. Nakase I, Noguchi K, Aoki A et al (2017) Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci Rep 7:1

    Article  CAS  Google Scholar 

  32. Zhao Y, He Z, Gao H et al (2018) Fine tuning of Core–Shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in antiatherosclerotic therapy. Biomacromolecules 19:2944–2956

    Article  CAS  PubMed  Google Scholar 

  33. Asai T, Tsuzuku T, Takahashi S et al (2014) Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 444:599–604

    Article  CAS  PubMed  Google Scholar 

  34. Akita H, Kogure K, Moriguchi R et al (2010) Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation. J Control Release 143:311–317

    Article  CAS  PubMed  Google Scholar 

  35. Xie D, Du J, Bao M et al (2019) A one-pot modular assembly strategy for triple-play enhanced cytosolic siRNA delivery. Biomater Sci 7:901–913

    Article  CAS  PubMed  Google Scholar 

  36. Parton RG, Hanzal-Bayer M, Hancock JF (2006) Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J Cell Sci 119:787–796

    Article  CAS  PubMed  Google Scholar 

  37. Fornero S, Bassino E, Ramella R et al (2014) Obligatory role for endothelial heparan sulphate proteoglycans and caveolae internalization in catestatin-dependent eNOS activation. BioMed Res Int 2014. https://www.hindawi.com/journals/bmri/2014/783623/

  38. Gestin M, Dowaidar M, Langel Ü (2017) Uptake mechanism of cell-penetrating peptides. In: Sunna A, Care A, Bergquist PL (eds) Peptides and peptide-based biomaterials and their biomedical applications. Springer, Cham, pp 255–264

    Chapter  Google Scholar 

  39. Ezzat K, Helmfors H, Tudoran O et al (2011) Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides. FASEB J 26:1172–1180

    Article  PubMed  CAS  Google Scholar 

  40. Lindberg S, Regberg J, Eriksson J et al (2015) A convergent uptake route for peptide- and polymer-based nucleotide delivery systems. J Control Release 206:58–66

    Article  CAS  PubMed  Google Scholar 

  41. Mousavi SA, Malerød L, Berg T et al (2004) Clathrin-dependent endocytosis. Biochem J 377:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robinson MS (2015) Forty years of Clathrin-coated vesicles. Traffic 16:1210–1238

    Article  CAS  PubMed  Google Scholar 

  43. Linden CD, Roth TF (1983) The structure of coated vesicles. In: Cuatrecasas P, Roth T (eds) Receptor-mediated endocytosis. Springer Netherlands, Dordrecht, pp 19–44

    Chapter  Google Scholar 

  44. Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracellular Vesicles 3:24641

    Article  CAS  Google Scholar 

  45. Kawaguchi Y, Takeuchi T, Kuwata K et al (2016) Syndecan-4 is a receptor for Clathrin-mediated endocytosis of arginine-rich cell-penetrating peptides. Bioconjug Chem 27:1119–1130

    Article  CAS  PubMed  Google Scholar 

  46. Zeineddine R, Yerbury JJ (2015) The role of macropinocytosis in the propagation of protein aggregation associated with neurodegenerative diseases. Front Physiol 6:277

    Article  PubMed  PubMed Central  Google Scholar 

  47. Michael DR, Ashlin TG, Davies CS et al (2013) Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis. Cytokine 64:357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. White E (2013) Exploiting the bad eating habits of Ras-driven cancers. Genes Dev 27:2065–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dash-Wagh S, Langel Ü, Ulfendahl M (2016) PepFect6 mediated SiRNA delivery into organotypic cultures. In: Shum K, Rossi J (eds) SiRNA delivery methods: methods and protocols. Springer, New York, NY, pp 27–35

    Chapter  Google Scholar 

  50. Tanaka K, Kanazawa T, Ogawa T et al (2011) A novel, bio-reducible gene vector containing arginine and Histidine enhances gene transfection and expression of plasmid DNA. Chem Pharm Bull 59:202–207

    Article  CAS  Google Scholar 

  51. Meng Z, Luan L, Kang Z et al (2016) Histidine-enriched multifunctional peptide vectors with enhanced cellular uptake and endosomal escape for gene delivery. J Mater Chem B 5:74–84

    Article  PubMed  CAS  Google Scholar 

  52. Mäe M, EL Andaloussi S, Lundin P et al (2009) A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J Control Release 134:221–227

    Article  PubMed  CAS  Google Scholar 

  53. Hu Y-B, Dammer EB, Ren R-J et al (2015) The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener 4:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Algayer B, O’Brien A, Momose A et al (2019) Novel pH selective, highly lytic peptides based on a chimeric influenza hemagglutinin peptide/cell penetrating peptide motif. Molecules 24:2079

    Article  CAS  PubMed Central  Google Scholar 

  55. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494

    Article  CAS  PubMed  Google Scholar 

  56. Kurreck J (2006) siRNA efficiency: structure or sequence—that is the question. J Biomed Biotechnol 2006:83757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404

    Article  CAS  PubMed  Google Scholar 

  58. Bartlett DW (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tuzmen S, Tuzmen P, Arora S et al (2011) RNAi-based functional pharmacogenomics. In: DiStefano JK (ed) Disease gene identification: methods and protocols. Humana Press, Totowa, NJ, pp 271–290

    Chapter  Google Scholar 

  60. Tatiparti K, Sau S, Kashaw SK et al (2017) siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel) 7:77

    Article  CAS  Google Scholar 

  61. Cardarelli F, Digiacomo L, Marchini C et al (2016) The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Sci Rep 6:25879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gaziova Z, Baumann V, Winkler A-M et al (2014) Chemically defined polyethylene glycol siRNA conjugates with enhanced gene silencing effect. Bioorg Med Chem 22:2320–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Draz MS, Fang BA, Zhang P et al (2014) Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 4:872–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lázaro I de, Vranic S, Marson D, et al (2018) Graphene oxide as 2D platform for COMPLEXATION and intracellular delivery of siRNA. 486522

    Google Scholar 

  65. Alhaddad A, Adam M-P, Botsoa J et al (2011) Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7:3087–3095

    Article  CAS  PubMed  Google Scholar 

  66. Mody VV, Cox A, Shah S et al (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4:385–392

    Article  CAS  Google Scholar 

  67. Xie X, Lin W, Li M et al (2016) Efficient siRNA delivery using novel cell-penetrating peptide-siRNA conjugate-loaded nanobubbles and ultrasound. Ultrasound Med Biol 42:1362–1374

    Article  PubMed  Google Scholar 

  68. McClorey G, Banerjee S (2018) Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines 6:51

    Article  PubMed Central  CAS  Google Scholar 

  69. Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284:17897–17901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muratovska A, Eccles MR (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558:63–68

    Article  CAS  PubMed  Google Scholar 

  71. Davidson TJ, Harel S, Arboleda VA et al (2004) Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 24:10040–10046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lundberg P, El-Andaloussi S, Sütlü T et al (2007) Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 21:2664–2671

    Article  CAS  PubMed  Google Scholar 

  73. Moschos SA, Jones SW, Perry MM et al (2007) Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 18:1450–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tai W, Gao X (2017) Functional peptides for siRNA delivery. Adv Drug Deliv Rev 110–111:157–168

    Article  PubMed  CAS  Google Scholar 

  75. Turner JJ, Jones S, Fabani MM et al (2007) RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cell Mol Dis 38:1–7

    Article  CAS  Google Scholar 

  76. Chiu Y-L, Ali A, Chu C et al (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol 11:1165–1175

    Article  CAS  PubMed  Google Scholar 

  77. Mathupala SP (2009) Delivery of small-interfering RNA (siRNA) to the brain. Expert Opin Ther Pat 19:137–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ye J, Liu E, Gong J et al (2017) High-yield synthesis of monomeric LMWP(CPP)-siRNA covalent conjugate for effective cytosolic delivery of siRNA. Theranostics 7:2495–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu Z, Ye J, Pei X et al (2018) Improved method for synthesis of low molecular weight protamine–siRNA conjugate. Acta Pharm Sin B 8:116–126

    Article  PubMed  Google Scholar 

  80. Pärnaste L, Arukuusk P, Langel K et al (2017) The formation of nanoparticles between small interfering RNA and amphipathic cell-penetrating peptides. Mol Ther Nucleic Acids 7:1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Endoh T, Sisido M, Ohtsuki T (2008) Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. Bioconjug Chem 19:1017–1024

    Article  CAS  PubMed  Google Scholar 

  82. Endoh T, Ohtsuki T (2010) Cellular siRNA delivery using TatU1A and photo-induced RNA interference. In: Min W-P, Ichim T (eds) RNA interference. Humana Press, Totowa, NJ, pp 271–281

    Chapter  Google Scholar 

  83. Tsujiuchi T, Miller AD, Wakabayashi T et al (2014) Chapter 27 - RNA interference therapeutics for tumor therapy: promising work in Progress. In: Lattime EC, Gerson SL (eds) Gene therapy of Cancer, 3rd edn. Academic Press, San Diego, CA, pp 393–408

    Chapter  Google Scholar 

  84. Matsushita-Ishiodori Y, Ohtsuki T (2012) Photoinduced RNA interference. Acc Chem Res 45:1039–1047

    Article  CAS  PubMed  Google Scholar 

  85. Eguchi A, Meade BR, Chang Y-C et al (2009) Efficient siRNA delivery into primary cells by peptide transduction-dsRNA binding domain (PTD-DRBD) fusion protein. Nat Biotechnol 27:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li H, Zheng X, Koren V et al (2014) Highly efficient delivery of siRNA to a heart transplant model by a novel cell penetrating peptide-dsRNA binding domain. Int J Pharm 469:206–213

    Article  CAS  PubMed  Google Scholar 

  87. Li H, Tsui T (2015) Six-cell penetrating peptide-based fusion proteins for siRNA delivery. Drug Del 22:436–443

    Article  CAS  Google Scholar 

  88. Futaki S, Ohashi W, Suzuki T et al (2001) Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 12:1005–1011

    Article  CAS  PubMed  Google Scholar 

  89. EL Andaloussi S, Lehto T, Mäger I et al (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39:3972–3987

    Article  PubMed  CAS  Google Scholar 

  90. Urgard E, Lorents A, Klaas M et al (2016) Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. J Control Release 235:195–204

    Article  CAS  PubMed  Google Scholar 

  91. Lam JKW, Chow MYT, Zhang Y et al (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4:e252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mitsueda A, Shimatani Y, Ito M et al (2013) Development of a novel nanoparticle by dual modification with the pluripotential cell-penetrating peptide PepFect6 for cellular uptake, endosomal escape, and decondensation of an siRNA core complex. Pept Sci 100:698–704

    Article  CAS  Google Scholar 

  93. Ervin E-H, Pook M, Teino I et al (2019) Targeted gene silencing in human embryonic stem cells using cell-penetrating peptide PepFect 14. Stem Cell Res Ther 10:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Srimanee A, Arvanitidou M, Kim K et al (2018) Cell-penetrating peptides for siRNA delivery to glioblastomas. Peptides 104:62–69

    Article  CAS  PubMed  Google Scholar 

  95. Arukuusk P, Pärnaste L, Oskolkov N et al (2013) New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochim Biophys Acta Biomembr 1828:1365–1373

    Article  CAS  Google Scholar 

  96. Ferrer-Miralles N, Corchero JL, Kumar P et al (2011) Biological activities of histidine-rich peptides; merging biotechnology and nanomedicine. Microb Cell Factories 10:101

    Article  CAS  Google Scholar 

  97. Crombez L, Aldrian-Herrada G, Konate K et al (2009) A new potent secondary amphipathic cell–penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17:95–103

    Article  CAS  PubMed  Google Scholar 

  98. Futaki S, Suzuki T, Ohashi W et al (2001) Arginine-rich peptides an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  CAS  PubMed  Google Scholar 

  99. Wender PA, Mitchell DJ, Pattabiraman K et al (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc Natl Acad Sci U S A 97:13003–13008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rydström A, Deshayes S, Konate K et al (2011) Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles. PLoS One 6:e25924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Konate K, Lindberg MF, Vaissiere A et al (2016) Optimisation of vectorisation property: a comparative study for a secondary amphipathic peptide. Int J Pharm 509:71–84

    Article  CAS  PubMed  Google Scholar 

  102. Vaissière A, Aldrian G, Konate K et al (2017) A retro-inverso cell-penetrating peptide for siRNA delivery. J Nanobiotechnol 15:34

    Article  CAS  Google Scholar 

  103. Chorev M, Goodman M (1995) Recent developments in retro peptides and proteins — an ongoing topochemical exploration. Trends Biotechnol 13:438–445

    Article  CAS  PubMed  Google Scholar 

  104. Aldrian G, Vaissière A, Konate K et al (2017) PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J Control Release 256:79–91

    Article  CAS  PubMed  Google Scholar 

  105. Park J, Ryu J, Kim K-A et al (2002) Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J Gen Virol 83:1173–1181

    Article  CAS  PubMed  Google Scholar 

  106. Mitchell DJ, Steinman L, Kim DT et al (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res 56:318–325

    Article  CAS  PubMed  Google Scholar 

  107. Kim WJ, Christensen LV, Jo S et al (2006) Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther 14:343–350

    Article  PubMed  CAS  Google Scholar 

  108. Tönges L, Lingor P, Egle R et al (2006) Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA 12:1431–1438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Pan R, Xu W, Ding Y et al (2016) Uptake mechanism and direct translocation of a new CPP for siRNA delivery. Mol Pharm 13:1366–1374

    Article  CAS  PubMed  Google Scholar 

  110. Huang Y, Wang X, Huang W et al (2015) Systemic administration of siRNA via cRGD-containing peptide. Sci Rep 5:12458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Varner JA, Cheresh DA (1996) Integrins and cancer. Curr Opin Cell Biol 8:724–730

    Article  CAS  PubMed  Google Scholar 

  112. Danhier F, Le Breton A, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973

    Article  CAS  PubMed  Google Scholar 

  113. Kato M, Mrksich M (2004) Using model substrates to study the dependence of focal adhesion formation on the affinity of integrin−ligand complexes. Biochemistry 43:2699–2707

    Article  CAS  PubMed  Google Scholar 

  114. Aitken A, Learmonth M (2009) Estimation of disulfide bonds using Ellman’s reagent. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, NJ, pp 1053–1055

    Chapter  Google Scholar 

  115. Tai W (2019) Current aspects of siRNA bioconjugate for in vitro and in vivo delivery. Molecules 24:2211

    Article  CAS  PubMed Central  Google Scholar 

  116. Jiang T, Olson ES, Nguyen QT et al (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A 101:17867–17872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li H, He J, Yi H et al (2015) siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells. Biosci Rep 35:e00181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Fang J, Shing Y, Wiederschain D et al (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci U S A 97:3884–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Klein G, Vellenga E, Fraaije MW et al (2004) The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 50:87–100

    Article  CAS  PubMed  Google Scholar 

  120. Song E, Zhu P, Lee S-K et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717

    Article  CAS  PubMed  Google Scholar 

  121. Liang Z, Hall Jason A, Natasha L et al (2007) CD44 regulates vascular gene expression in a proatherogenic environment. Arterioscler Thromb Vasc Biol 27:886–892

    Article  CAS  Google Scholar 

  122. Bot PT, Pasterkamp G, Goumans M-J et al (2010) Hyaluronic acid metabolism is increased in unstable plaques. Eur J Clin Investig 40:818–827

    Article  CAS  Google Scholar 

  123. Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43

    Article  CAS  PubMed  Google Scholar 

  124. Zeller S, Choi CS, Uchil PD et al (2015) Attachment of cell-binding ligands to arginine-rich cell-penetrating peptides enables cytosolic translocation of complexed siRNA. Chem Biol 22:50–62

    Article  CAS  PubMed  Google Scholar 

  125. Pooga M, Hällbrink M, Zorko M et al (1998) Cell penetration by transportan. FASEB J 12:67–77

    Article  CAS  PubMed  Google Scholar 

  126. Youn P, Chen Y, Furgeson DY (2014) A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm 11:486–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu Y-Y, Cao X-W, Fu L-Y et al (2019) Screening and characterization of a novel high-efficiency tumor-homing cell-penetrating peptide from the buffalo cathelicidin family. J Pept Sci 25:e3201

    Article  PubMed  CAS  Google Scholar 

  128. Myrberg H, Zhang L, Mäe M et al (2008) Design of a tumor-homing cell-penetrating peptide. Bioconjug Chem 19:70–75

    Article  CAS  PubMed  Google Scholar 

  129. Ko YT, Kale A, Hartner WC et al (2009) Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery. J Control Release 133:132–138

    Article  CAS  PubMed  Google Scholar 

  130. Kang JH, Battogtokh G, Ko YT (2017) Self-assembling lipid–peptide hybrid nanoparticles of phospholipid–nonaarginine conjugates for enhanced delivery of nucleic acid therapeutics. Biomacromolecules 18:3733–3741

    Article  CAS  PubMed  Google Scholar 

  131. Kogure K, Moriguchi R, Sasaki K et al (2004) Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J Control Release 98:317–323

    Article  CAS  PubMed  Google Scholar 

  132. Nakamura Y, Kogure K, Futaki S et al (2007) Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release 119:360–367

    Article  CAS  PubMed  Google Scholar 

  133. Li W, Nicol F, Szoka FC (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985

    Article  CAS  PubMed  Google Scholar 

  134. Hatakeyama H, Akita H, Kogure K et al (2007) Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 14:68–77

    Article  CAS  PubMed  Google Scholar 

  135. Hatakeyama H, Akita H, Ito E et al (2011) Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32:4306–4316

    Article  CAS  PubMed  Google Scholar 

  136. Xiang B, Jia X-L, Qi J-L et al (2017) Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. Int J Nanomedicine 12:2385–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xiong X-B, Uludağ H, Lavasanifar A (2010) Virus-mimetic polymeric micelles for targeted siRNA delivery. Biomaterials 31:5886–5893

    Article  CAS  PubMed  Google Scholar 

  138. Nam HY, Kim J, Kim S et al (2011) Cell penetrating peptide conjugated bioreducible polymer for siRNA delivery. Biomaterials 32:5213–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jun E, Kim S, Kim J-H et al (2015) Design of a multicomponent peptide-woven nanocomplex for delivery of siRNA. PLoS One 10:e0118310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Hong H, Lee HY, Kwak W et al (2008) Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis. J Cell Mol Med 12:2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mitsueda A, Shimatani Y, Ito M et al (2013) Development of a novel nanoparticle by dual modification with the pluripotential cell-penetrating peptide PepFect6 for cellular uptake, endosomal escape, and decondensation of an siRNA core complex. Biopolymers 100:698–704

    Article  CAS  PubMed  Google Scholar 

  142. Ren JL, Xu CS, Zhou ZY et al (2009) A novel ultrasound microbubble carrying gene and tat peptide: preparation and characterization. Acad Radiol 16:1457–1465

    Article  PubMed  Google Scholar 

  143. Miller DM, Thomas SD, Islam A et al (2012) c-Myc and cancer metabolism. Clin Cancer Res 18:5546–5553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang Y, Yang Y, Xie X et al (2016) Dual stimulus of hyperthermia and intracellular redox environment triggered release of siRNA for tumor-specific therapy. Int J Pharm 506:158–173

    Article  CAS  PubMed  Google Scholar 

  145. Qi L, Wu L, Zheng S et al (2012) Cell-penetrating magnetic nanoparticles for highly efficient delivery and intracellular imaging of siRNA. Biomacromolecules 13:2723–2730

    Article  CAS  PubMed  Google Scholar 

  146. Ben Djemaa S, David S, Hervé-Aubert K et al (2018) Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. Eur J Pharm Biopharm 131:99–108

    Article  CAS  PubMed  Google Scholar 

  147. Ben Djemaa S, Herve-Aubert K, Lajoie L et al (2019) gH625 cell-penetrating peptide promotes the endosomal escape of nanovectorized siRNA in a triple negative breast cancer cell line. Biomacromolecules 20(8):3076–3086

    Article  CAS  PubMed  Google Scholar 

  148. Yang Y, Xie X, Yang Y et al (2016) Polymer nanoparticles modified with photo- and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol Pharm 13:1508–1519

    Article  CAS  PubMed  Google Scholar 

  149. Yao Y, Sun T, Huang S et al (2012) Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci Transl Med 4:130ra48-130ra48

    Article  Google Scholar 

  150. Kumar P, Ban H-S, Kim S-S et al (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ma Y, Kowolik CM, Swiderski PM et al (2011) Humanized Lewis-Y specific antibody based delivery of STAT3 siRNA. ACS Chem Biol 6

    Google Scholar 

Download references

Acknowledgements

This work was supported by Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Falato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Falato, L., Gestin, M., Langel, Ü. (2021). Cell-Penetrating Peptides Delivering siRNAs: An Overview. In: Ditzel, H.J., Tuttolomondo, M., Kauppinen, S. (eds) Design and Delivery of SiRNA Therapeutics. Methods in Molecular Biology, vol 2282. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1298-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1298-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1297-2

  • Online ISBN: 978-1-0716-1298-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics