Skip to main content

Synthesis and Testing of Novel Isomeric Mitochondriotropic Derivatives of Resveratrol and Quercetin

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2275))

Abstract

Resveratrol and quercetin are among the most studied plant polyphenols, and have many health-promoting actions. Strategies to accumulate them into mitochondria may be of therapeutic relevance, since these compounds are redox active and are well known to impact mitochondria and mitochondrial proteins. We report here the procedures to synthesize mitochondria-targeted resveratrol and quercetin derivatives; the synthetic strategies reported are however expected to be adaptable to other polyphenols with similar reactivity at the phenolic hydroxyls.

Mitochondrial targeting can be achieved by conjugation with triphenylphosphonium , a lipophilic cation; this was linked via a butyl spacer forming an ether bond with one of the phenolic oxygens. The first step toward the synthesis of all mitochondriotropic derivatives described in this work is the production of a regiospecific -(4-O-chlorobutyl) derivative. Triphenylphosphonium (P+Ph3I) is then introduced through two consecutive nucleophilic substitution steps: –Cl → –I → –P+Ph3I. Pure mono-substituted chlorobutyl regioisomers are obtained by purification from the reaction mixture in the case of resveratrol , while specific protection strategies are required for quercetin to favor alkylation of one specific hydroxyl.

Functionalization of the remaining hydroxyls can be exploited to modulate the physicochemical properties of the derivatives (i.e., water solubility, affinity for cell membranes); we report here synthetic protocols to obtain acetylated and methylated analogs.

A brief description of some methods to assess the accumulation of the derivatives in mitochondria is also given; the proposed techniques are the use of a TPP +-selective electrode (with isolated rat liver mitochondria ) and fluorescence microscopy (with cultured cells).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbaszadeh H, Keikhaei B, Mottaghi S (2019) A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother Res 33:2002–2014

    Article  PubMed  Google Scholar 

  2. Gorzynik-Debicka M, Przychodzen P, Cappello F, Kuban-Jankowska A, Marino Gammazza A, Knap N, Wozniak M, Gorska-Ponikowska M (2018) Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci 19:686

    Article  PubMed Central  CAS  Google Scholar 

  3. Xing L, Zhang H, Qi R, Tsao R, Mine Y (2019) Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem 67:1029–1043

    Article  CAS  PubMed  Google Scholar 

  4. Silvester AJ, Aseer KR, Yun JW (2019) Dietary polyphenols and their roles in fat browning. J Nutr Biochem 64:1–12

    Article  CAS  PubMed  Google Scholar 

  5. Russo GL, Spagnuolo C, Russo M, Tedesco I, Moccia S, Cervellera C (2019) Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochem Pharmacol 173:113719

    Article  PubMed  CAS  Google Scholar 

  6. Reyes-Farias M, Carrasco-Pozo C (2019) The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci 20:3177

    Article  CAS  PubMed Central  Google Scholar 

  7. Jiang Z, Chen K, Cheng L, Yan B, Qian W, Cao J, Li J, Wu E, Ma Q, Yang W (2017) Resveratrol and cancer treatment: updates. Ann N Y Acad Sci 1403:59–69

    Article  CAS  PubMed  Google Scholar 

  8. Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112

    Article  CAS  PubMed  Google Scholar 

  9. De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M (2009) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta 1787:1425–1432

    Article  PubMed  CAS  Google Scholar 

  10. Calabrese V, Cornelius C, Trovato A, Cavallaro M, Mancuso C, Di Rienzo L, Condorelli D, De Lorenzo A, Calabrese EJ (2010) The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des 16:877–883

    Article  CAS  PubMed  Google Scholar 

  11. Hou DX, Kumamoto T (2010) Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal 13:691–719

    Article  CAS  PubMed  Google Scholar 

  12. Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    Article  CAS  PubMed  Google Scholar 

  13. Harikumar KB, Aggarwal BB (2008) Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 7:1020–1035

    Article  CAS  PubMed  Google Scholar 

  14. Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiol 55:2085–2101

    Article  CAS  PubMed  Google Scholar 

  15. Sajadimajd S, Bahramsoltani R, Iranpanah A, Kumar Patra J, Das G, Gouda S, Rahimi R, Rezaeiamiri E, Cao H, Giampieri F et al (2019) Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol Res 151:104584

    Article  PubMed  CAS  Google Scholar 

  16. Lejri I, Agapouda A, Grimm A, Eckert A (2019) Mitochondria- and oxidative stress-targeting substances in cognitive decline-related disorders: from molecular mechanisms to clinical evidence. Oxidative Med Cell Longev 2019:9695412

    Article  CAS  Google Scholar 

  17. Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S (2020) Resveratrol targeting the Wnt signaling pathway: a focus on therapeutic activities. J Cell Physiol 235(5):4135–4145

    Article  CAS  PubMed  Google Scholar 

  18. Tavana E, Mollazadeh H, Mohtashami E, Modaresi SMS, Hosseini A, Sabri H, Soltani A, Javid H, Afshari AR, Sahebkar A (2019) Quercetin: a promising phytochemical for the treatment of glioblastoma multiforme. BioFactors 46:356–366

    Article  PubMed  CAS  Google Scholar 

  19. Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z, Mubarak MS (2018) Anticancer potential of quercetin: a comprehensive review. Phytother Res 32:2109–2130

    Article  CAS  PubMed  Google Scholar 

  20. Lin X, Wu G, Huo WQ, Zhang Y, Jin FS (2012) Resveratrol induces apoptosis associated with mitochondrial dysfunction in bladder carcinoma cells. Int J Urol 19:757–764

    Article  CAS  PubMed  Google Scholar 

  21. Delmas D, Solary E, Latruffe N (2011) Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr Med Chem 18:1100–1121

    Article  CAS  PubMed  Google Scholar 

  22. Liu KC, Yen CY, Wu RS, Yang JS, Lu HF, Lu KW, Lo C, Chen HY, Tang NY, Wu CC et al (2012) The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells. Environ Toxicol 29(4):428–439

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez-Enriquez S, Pacheco-Velazquez SC, Marin-Hernandez A, Gallardo-Perez JC, Robledo-Cadena DX, Hernandez-Resendiz I, Garcia-Garcia JD, Belmont-Diaz J, Lopez-Marure R, Hernandez-Esquivel L et al (2019) Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicol Appl Pharmacol 370:65–77

    Article  CAS  PubMed  Google Scholar 

  24. Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  CAS  PubMed  Google Scholar 

  25. Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230s–242s

    Article  CAS  PubMed  Google Scholar 

  26. Dabeek WM, Marra MV (2019) Dietary quercetin and Kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11:2288

    Article  CAS  PubMed Central  Google Scholar 

  27. Petersen B, Egert S, Bosy-Westphal A, Muller MJ, Wolffram S, Hubbermann EM, Rimbach G, Schwarz K (2016) Bioavailability of quercetin in humans and the influence of food matrix comparing quercetin capsules and different apple sources. Food Res Int 88:159–165

    Article  CAS  PubMed  Google Scholar 

  28. Burak C, Brull V, Langguth P, Zimmermann BF, Stoffel-Wagner B, Sausen U, Stehle P, Wolffram S, Egert S (2017) Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. Eur J Nutr 56:343–353

    Article  CAS  PubMed  Google Scholar 

  29. Svilar L, Martin JC, Defoort C, Paut C, Tourniaire F, Brochot A (2019) Quantification of trans-resveratrol and its metabolites in human plasma using ultra-high performance liquid chromatography tandem quadrupole-orbitrap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1104:119–129

    Article  CAS  PubMed  Google Scholar 

  30. Garg R, Sardana S (2017) Research Problems Associated with Resveratrol (trans-3, 5, 4′- trihydroxystilbene; RSV) and Various Strategies to Overcome those Problems (Review). Curr Drug Deliv 14:364–376

    Article  PubMed  CAS  Google Scholar 

  31. Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabo I, Zoratti M (2019) Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 181:111557

    Article  CAS  PubMed  Google Scholar 

  32. Biasutto L, Mattarei A, Azzolini M, La Spina M, Sassi N, Romio M, Paradisi C, Zoratti M (2017) Resveratrol derivatives as a pharmacological tool. Ann N Y Acad Sci 1403:27–37

    Article  CAS  PubMed  Google Scholar 

  33. Biasutto L, Mattarei A, Sassi N, Azzolini M, Romio M, Paradisi C, Zoratti M (2014) Improving the efficacy of plant polyphenols. Anti Cancer Agents Med Chem 14:1332–1342

    Article  CAS  Google Scholar 

  34. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denisenko TV, Gorbunova AS, Zhivotovsky B (2019) Mitochondrial involvement in migration, invasion and metastasis. Front Cell Dev Biol 7:355

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sica V, Bravo-San Pedro JM, Stoll G, Kroemer G (2020) Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int J Cancer 146:10–17

    Article  CAS  PubMed  Google Scholar 

  37. Biasutto L, Mattarei A, Marotta E, Bradaschia A, Sassi N, Garbisa S, Zoratti M, Paradisi C (2008) Development of mitochondria-targeted derivatives of resveratrol. Bioorg Med Chem Lett 18:5594–5597

    Article  CAS  PubMed  Google Scholar 

  38. Mattarei A, Biasutto L, Marotta E, De Marchi U, Sassi N, Garbisa S, Zoratti M, Paradisi C (2008) A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. Chembiochem 9:2633–2642

    Article  CAS  PubMed  Google Scholar 

  39. Mattarei A, Sassi N, Durante C, Biasutto L, Sandonà G, Marotta E, Garbisa S, Gennaro A, Paradisi C, Zoratti M (2011) Redox properties and cytotoxicity of synthetic isomeric Mitochondriotropic derivatives of the natural polyphenol quercetin. Eur J Org Chem 2011:5577–5586

    Article  CAS  Google Scholar 

  40. Sassi N, Biasutto L, Mattarei A, Carraro M, Giorgio V, Citta A, Bernardi P, Garbisa S, Szabo I, Paradisi C et al (2012) Cytotoxicity of a mitochondriotropic quercetin derivative: mechanisms. Biochim Biophys Acta 1817:1095–1106

    Article  CAS  PubMed  Google Scholar 

  41. Sassi N, Mattarei A, Azzolini M, Bernardi P, Szabo I, Paradisi C, Zoratti M, Biasutto L (2014) Mitochondria-targeted resveratrol derivatives act as cytotoxic pro-oxidants. Curr Pharm Des 20:172–179

    Article  CAS  PubMed  Google Scholar 

  42. Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777:1028–1031

    Article  CAS  PubMed  Google Scholar 

  43. Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352

    Article  CAS  PubMed  Google Scholar 

  44. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG et al (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787:437–461

    Article  CAS  PubMed  Google Scholar 

  45. Bouktaib M, Lebrun S, Atmani A, Rolando C (2002) Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions. Tetrahedron 58:10001–10009

    Article  CAS  Google Scholar 

  46. Rao KV, Owoyale JA (1976) Partial methylation of quercetin: direct synthesis of tamarixetin, ombuin and ayanin. J Heterocyclic Chem 13:1293–1295

    Article  CAS  Google Scholar 

  47. Slabbert NP (1977) Ionisation of some flavanols and dihydroflavonols. Tetrahedron 33:821–824

    Article  CAS  Google Scholar 

  48. Mattarei A, Biasutto L, Rastrelli F, Garbisa S, Marotta E, Zoratti M, Paradisi C (2010) Regioselective O-derivatization of quercetin via ester intermediates. An improved synthesis of rhamnetin and development of a new mitochondriotropic derivative. Molecules (Basel, Switzerland) 15:4722–4736

    Article  CAS  Google Scholar 

  49. Metodiewa D, Jaiswal AK, Cenas N, Dickancaite E, Segura-Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26:107–116

    Article  CAS  PubMed  Google Scholar 

  50. Lolli G, Cozza G, Mazzorana M, Tibaldi E, Cesaro L, Donella-Deana A, Meggio F, Venerando A, Franchin C, Sarno S et al (2012) Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry 51:6097–6107

    Article  CAS  PubMed  Google Scholar 

  51. Serviddio G, Sastre J (2010) Measurement of mitochondrial membrane potential and proton leak. Methods Mol Biol 594:107–121

    Article  CAS  PubMed  Google Scholar 

  52. Burgess J (1978) Metal ions in solution. Ellis Horwood Ltd, Chichester

    Google Scholar 

  53. Gritti F, Guiochon G (2006) Influence of the degree of coverage of C18-bonded stationary phases on the mass transfer mechanism and its kinetics. J Chromatogr A 1128:45–60

    Article  CAS  PubMed  Google Scholar 

  54. McCalley DV (2010) The challenges of the analysis of basic compounds by high performance liquid chromatography: some possible approaches for improved separations. J Chromatogr A 1217:858–880

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. M. Zoratti for support and useful discussions. This work was supported by grants from the Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) (“Developing a Pharmacology of Polyphenols ”), from the Italian Ministry of the University and Research (PRIN n. 20107Z8XBW_004), and by the CNR Project of Special Interest on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Biasutto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Biasutto, L., Mattarei, A., Paradisi, C. (2021). Synthesis and Testing of Novel Isomeric Mitochondriotropic Derivatives of Resveratrol and Quercetin . In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2275. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1262-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1262-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1261-3

  • Online ISBN: 978-1-0716-1262-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics