Skip to main content

Fast Afucosylation Profiling of Glycoengineered Antibody Subunits by Middle-Up Mass Spectrometry

  • Protocol
  • First Online:
Mass Spectrometry of Glycoproteins

Abstract

Middle-up LC-MS antibody characterization workflows using reduction or IdeS digestion for a focused assessment of N-glycan profiling of three representative glycoengineered monoclonal antibodies (mAbs), namely, obinutuzumab (GlycomAb technology, Glycart/Roche), benralizumab (Potelligent Technology, BioWa, Kyowa Kirin) and mAb B (kifunensine) and compared to mAb A, produced in a common CHO cell line. In addition, EndoS or EndoS2 enzyme are used for quantitative determination of Fc-glycan core afucosylation and high mannose for these antibodies, as requested by health authorities for Fc-competent therapeutics mAbs critical quality attributes (CQAs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck A, Liu H (2019) Macro- and micro-heterogeneity of natural and recombinant IgG antibodies. Antibodies 8:18. https://doi.org/10.3390/antib8010018

    Article  CAS  PubMed Central  Google Scholar 

  2. Duivelshof BL, Jiskoot W, Beck A, Veuthey J-L, Guillarme D, D’Atri V (2019) Glycosylation of biosimilars: recent advances in analytical characterization and clinical implications. Anal Chim Acta 1089:1–18. https://doi.org/10.1016/j.aca.2019.08.044

    Article  CAS  PubMed  Google Scholar 

  3. De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, Staples GO, Furuki K, Frenkel R, Hu Y, Sosic Z, Zhang P, Altmann F, Nwald-Grube CG, Shao C, Zaia J, Evers W, Pengelley S, Suckau D, Wiechmann A, Resemann A, Jabs W, Beck A, Froehlich JW, Huang C, Li Y, Liu Y, Sun S, Wang Y, Seo Y, An HJ, Reichardt N-C, Ruiz JE, Archer-Hartmann S, Azadi P, Bell L, Lakos Z, An Y, Cipollo JF, Pucic-Bakovic M, Štambuk J, Lauc G, Li X, Wang PG, Bock A, Hennig R, Rapp E, Creskey M, Cyr TD, Nakano M, Sugiyama T, Leung P-KA, Link-Lenczowski P, Jaworek J, Yang S, Zhang H, Kelly T, Klapoetke S, Cao R, Kim JY, Lee HK, Lee JY, Yoo JS, Kim S-R, Suh S-K, de Haan N, Falck D, Lageveen-Kammeijer GSM, Wuhrer M, Emery RJ, Kozak RP, Liew LP, Royle L, Urbanowicz PA, Packer NH, Song X, Everest-Dass A, Lattová E, Cajic S, Alagesan K, Kolarich D, Kasali T, Lindo V, Chen Y, Goswami K, Gau B, Amunugama R, Jones R, CJM S, Kato K, Yagi H, Kondo S, Yuen CT, Harazono A, Shi X, Magnelli PE, Kasper BT, Mahal L, Harvey DJ, O’Flaherty R, Rudd PM, Saldova R, Hecht ES, Muddiman DC, Kang J, Bhoskar P, Menard D, Saati A, Merle C, Mast S, Tep S, Truong J, Nishikaze T, Sekiya S, Shafer A, Funaoka S, Toyoda M, de Vreugd P, Caron C, Pradhan P, Tan NC, Mechref Y, Patil S, Rohrer JS, Chakrabarti R, Dadke D, Lahori M, Zou C, Cairo C, Reiz B, Whittal RM, Lebrilla CB, Wu L, Guttman A, Szigeti M, Kremkow BG, Lee KH, Sihlbom C, Adamczyk B, Jin C, Karlsson NG, Örnros J, Larson G, Nilsson J, Meyer B, Wiegandt A, Komatsu E, Perreault H, Bodnar ED, Said N, Francois Y-N, Leize-Wagner E, Maier S, Zeck A, AJR H, Yang Y, Haselberg R, Yu YQ, Alley W, Leone JW, Yuan H, Stein SE (2020) NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Mol Cell Proteomics 19:11–30. https://doi.org/10.1074/mcp.RA119.001677

    Article  PubMed  Google Scholar 

  4. Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4:419–425. https://doi.org/10.4161/mabs.20996

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stoll DR, Harmes DC, Staples GO, Potter OG, Dammann CT, Guillarme D, Beck A (2018) Development of comprehensive online two-dimensional liquid chromatography/mass spectrometry using hydrophilic interaction and reversed-phase separations for rapid and deep profiling of therapeutic antibodies. Anal Chem 90:5923–5929. https://doi.org/10.1021/acs.analchem.8b00776

    Article  CAS  PubMed  Google Scholar 

  6. Carter PJ, Lazar GA (2018) Next generation antibody drugs: pursuit of the “high-hanging fruit”. Nat Rev Drug Discov 17:197–223. https://doi.org/10.1038/nrd.2017.227

    Article  CAS  PubMed  Google Scholar 

  7. Capuano C, Pighi C, Maggio R, Battella S, Morrone S, Palmieri G, Santoni A, Klein C, Galandrini R (2020) CD16 pre-ligation by defucosylated tumor-targeting mAb sensitizes human NK cells to γc cytokine stimulation via PI3K/mTOR axis. Cancer Immunol Immunother 69:501–512. https://doi.org/10.1007/s00262-020-02482-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, Grau R, Gerdes C, Nopora A, van Puijenbroek E, Ferrara C, Sondermann P, Jäger C, Strein P, Fertig G, Friess T, Schüll C, Bauer S, Dal Porto J, Del Nagro C, Dabbagh K, Dyer MJS, Poppema S, Klein C, Umaña P (2010) Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell–mediated B-cell cytotoxicity. Blood 115:4393–4402. https://doi.org/10.1182/blood-2009-06-225979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tai Y-T, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, Craigen J, Yates J, Gliddon L, Fieles W, Hoang B, Tunstead J, Christie AL, Kung AL, Richardson P, Munshi NC, Anderson KC (2014) Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 123:3128–3138. https://doi.org/10.1182/blood-2013-10-535088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S (2019) Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 16:337–362. https://doi.org/10.1080/14789450.2019.1578215

    Article  CAS  PubMed  Google Scholar 

  11. van der Burgt YEM, Kilgour DPA, Tsybin YO, Srzentić K, Fornelli L, Beck A, Wuhrer M, Nicolardi S (2019) Structural analysis of monoclonal antibodies by ultrahigh resolution MALDI in-source decay FT-ICR mass spectrometry. Anal Chem 91:2079–2085. https://doi.org/10.1021/acs.analchem.8b04515

    Article  CAS  PubMed  Google Scholar 

  12. Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A (2017) Orthogonal liquid chromatography–mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A 1498:128–146. https://doi.org/10.1016/j.chroma.2017.02.072

    Article  CAS  PubMed  Google Scholar 

  13. D’Atri V, Nováková L, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D (2019) Orthogonal middle-up approaches for characterization of the glycan heterogeneity of Etanercept by hydrophilic interaction chromatography coupled to high-resolution mass spectrometry. Anal Chem 91:873–880. https://doi.org/10.1021/acs.analchem.8b03584

    Article  CAS  PubMed  Google Scholar 

  14. Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, Sun J, Li N, Wang D, Nowak C, Neill A, Ponniah G, King C, Mason B, Beck A, Liu H (2018) Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs 10:513–538. https://doi.org/10.1080/19420862.2018.1438797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu S, Zang L (2016) Rapid quantitation of monoclonal antibody N-glyco-occupancy and afucosylation using mass spectrometry. Anal Biochem 509:142–145. https://doi.org/10.1016/j.ab.2016.06.029

    Article  CAS  PubMed  Google Scholar 

  16. Upton R, Bell L, Guy C, Caldwell P, Estdale S, Barran PE, Firth D (2016) Orthogonal assessment of biotherapeutic glycosylation: a case study correlating N-glycan Core Afucosylation of Herceptin with mechanism of action. Anal Chem 88:10259–10265. https://doi.org/10.1021/acs.analchem.6b02994

    Article  CAS  PubMed  Google Scholar 

  17. Collin M (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20:3046–3055. https://doi.org/10.1093/emboj/20.12.3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sjögren J, Struwe WB, Cosgrave EFJ, Rudd PM, Stervander M, Allhorn M, Hollands A, Nizet V, Collin M (2013) EndoS2 is a unique and conserved enzyme of serotype M49 group A streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein. Biochem J 455:107–118. https://doi.org/10.1042/BJ20130126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sjögren J, Olsson F, Beck A (2016) Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst 141:3114–3125. https://doi.org/10.1039/C6AN00071A

    Article  CAS  PubMed  Google Scholar 

  20. Giorgetti J, Beck A, Leize-Wagner E, François Y-N (2020) Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis—mass spectrometry. J Pharm Biomed Anal 182:113107. https://doi.org/10.1016/j.jpba.2020.113107

    Article  CAS  PubMed  Google Scholar 

  21. Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat M-C, Colas O, Dorsselaer AV, Cianférani S (2016) Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 13:157–183. https://doi.org/10.1586/14789450.2016.1132167

    Article  CAS  PubMed  Google Scholar 

  22. Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Dorsselaer AV, Cianférani S (2015) Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies: biosimilar antibodies. J Mass Spectrom 50:285–297. https://doi.org/10.1002/jms.3554

    Article  CAS  PubMed  Google Scholar 

  23. Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17:104–118. https://doi.org/10.1093/glycob/cwl057

    Article  CAS  PubMed  Google Scholar 

  24. Zhou Q, Shankara S, Roy A, Qiu H, Estes S, McVie-Wylie A, Culm-Merdek K, Park A, Pan C, Edmunds T (2008) Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol Bioeng 99:652–665. https://doi.org/10.1002/bit.21598

    Article  CAS  PubMed  Google Scholar 

  25. van Berkel PHC, Gerritsen J, Perdok G, Valbjørn J, Vink T, van de Winkel JGJ, Parren PWHI (2009) N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. Biotechnol Prog 25:244–251. https://doi.org/10.1002/btpr.92

    Article  PubMed  Google Scholar 

  26. Crispin M, Bowden TA, Coles CH, Harlos K, Aricescu AR, Harvey DJ, Stuart DI, Jones EY (2009) Carbohydrate and domain architecture of an immature antibody Glycoform exhibiting enhanced effector functions. J Mol Biol 387:1061–1066. https://doi.org/10.1016/j.jmb.2009.02.033

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wagner-Rousset, E. et al. (2021). Fast Afucosylation Profiling of Glycoengineered Antibody Subunits by Middle-Up Mass Spectrometry. In: Delobel, A. (eds) Mass Spectrometry of Glycoproteins. Methods in Molecular Biology, vol 2271. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1241-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1241-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1240-8

  • Online ISBN: 978-1-0716-1241-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics