Skip to main content

Determination of Cytosine Modifications in DNA by Chemical Labeling-Mass Spectrometry Analysis

  • Protocol
  • First Online:
  • 998 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

In active DNA demethylation, DNA cytosine methylation (5-methylcytosine, 5-mC) can be converted to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC) by ten-eleven translocation (TET) proteins. These cytosine derivatives play important functions in various biological processes. 5-HmC, 5-fC, and 5-caC in genomic DNA are generally present in low abundance, thus making the quantification of these DNA modifications a challenging task. Here, we developed a method that is capable of determining all the four cytosine modifications in genomic DNA by 2-bromo-1-(4-dimethylamino-phenyl)-ethanone (BDAPE) labeling in combination with liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) analysis. This method enables the sensitive and simultaneous detection of 5-mC, 5-hmC, 5-fC, and 5-caC in genomic DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Luo C, Hajkova P, Ecker JR (2018) Dynamic DNA methylation: in the right place at the right time. Science 361:1336–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu T, Ma CJ, Yuan BF, Feng YQ (2018) Modificaomics: deciphering the functions of biomolecule modifications. Sci China Chem 61:381–392

    Article  CAS  Google Scholar 

  3. Dor Y, Cedar H (2018) Principles of DNA methylation and their implications for biology and medicine. Lancet 392:777–786

    Article  CAS  PubMed  Google Scholar 

  4. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    Article  CAS  PubMed  Google Scholar 

  5. Shen L, Song CX, He C, Zhang Y (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83:585–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Z, Zhang Y (2020) Role of mammalian DNA methyltransferases in development. Annu Rev Biochem 89:135–158

    Article  CAS  PubMed  Google Scholar 

  7. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bilyard MK, Becker S, Balasubramanian S (2020) Natural, modified DNA bases. Curr Opin Chem Biol 57:1–7

    Article  CAS  PubMed  Google Scholar 

  9. Carell T, Kurz MQ, Muller M, Rossa M, Spada F (2018) Non-canonical bases in the genome: the regulatory information layer in DNA. Angew Chem Int Ed Engl 57:4296–4312

    Article  CAS  PubMed  Google Scholar 

  10. Feng Y, Xie NB, Tao WB, Ding JH, You XJ, Ma CJ, Zhang X, Yi C, Zhou X, Yuan BF, Feng YQ (2020) Transformation of 5-carboxylcytosine to cytosine through C–C bond cleavage in human cells constitutes a novel pathway for DNA demethylation. CCS Chem 2:994–1008

    CAS  Google Scholar 

  11. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  PubMed  Google Scholar 

  12. Lu X, Zhao BS, He C (2015) TET family proteins: oxidation activity, interacting molecules, and functions in diseases. Chem Rev 115:2225–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S (2014) 5-hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 6:1049–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang Y, Chu JM, Huang W, Xiong J, Xing XW, Zhou X, Feng YQ, Yuan BF (2013) Hydrophilic material for the selective enrichment of 5-hydroxymethylcytosine and its liquid chromatography-tandem mass spectrometry detection. Anal Chem 85:6129–6135

    Article  CAS  PubMed  Google Scholar 

  15. Tang Y, Xiong J, Jiang HP, Zheng SJ, Feng YQ, Yuan BF (2014) Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis. Anal Chem 86:7764–7772

    Article  CAS  PubMed  Google Scholar 

  16. Chen K, Zhao BS, He C (2016) Nucleic acid modifications in regulation of gene expression. Cell Chem Biol 23:74–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han D, Lu X, Shih AH, Nie J, You Q, Xu MM, Melnick AM, Levine RL, He C (2016) A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations. Mol Cell 63:711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Storebjerg TM, Strand SH, Hoyer S, Lynnerup AS, Borre M, Orntoft TF, Sorensen KD (2018) Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Clin Epigenetics 10:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pfeifer GP, Xiong W, Hahn MA, Jin SG (2014) The role of 5-hydroxymethylcytosine in human cancer. Cell Tissue Res 356:631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen K, Zhang J, Guo Z, Ma Q, Xu Z, Zhou Y, Xu Z, Li Z, Liu Y, Ye X, Li X, Yuan B, Ke Y, He C, Zhou L, Liu J, Ci W (2016) Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Res 26:103–118

    Article  CAS  PubMed  Google Scholar 

  21. Chen ML, Shen F, Huang W, Qi JH, Wang Y, Feng YQ, Liu SM, Yuan BF (2013) Quantification of 5-methylcytosine and 5-hydroxymethylcytosine in genomic DNA from hepatocellular carcinoma tissues by capillary hydrophilic-interaction liquid chromatography/quadrupole TOF mass spectrometry. Clin Chem 59:824–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kroeze LI, van der Reijden BA, Jansen JH (2015) 5-hydroxymethylcytosine: an epigenetic mark frequently deregulated in cancer. Biochim Biophys Acta 1855:144–154

    CAS  PubMed  Google Scholar 

  23. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu X, Han D, Zhao BS, Song CX, Zhang LS, Dore LC, He C (2015) Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res 25:386–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F, Yi C (2017) Single-cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at Single-Base resolution. Cell Stem Cell 20:720–731.e725

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Zhou C (2019) Formation and biological consequences of 5-formylcytosine in genomic DNA. DNA Repair (Amst) 81:102649

    Article  CAS  Google Scholar 

  27. Booth MJ, Raiber EA, Balasubramanian S (2015) Chemical methods for decoding cytosine modifications in DNA. Chem Rev 115:2240–2254

    Article  CAS  PubMed  Google Scholar 

  28. Hofer A, Liu ZJ, Balasubramanian S (2019) Detection, structure and function of modified DNA bases. J Am Chem Soc 141:6420–6429

    Article  CAS  PubMed  Google Scholar 

  29. Yuan BF, Feng YQ (2014) Recent advances in the analysis of 5-methylcytosine and its oxidation products. Trend Anal Chem 54:24–35

    Article  CAS  Google Scholar 

  30. Xiong J, Jiang HP, Peng CY, Deng QY, Lan MD, Zeng H, Zheng F, Feng YQ, Yuan BF (2015) DNA hydroxymethylation age of human blood determined by capillary hydrophilic-interaction liquid chromatography/mass spectrometry. Clin Epigenetics 7:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Xiong J, Yuan BF, Feng YQ (2019) Mass spectrometry for investigating the effects of toxic metals on nucleic acid modifications. Chem Res Toxicol 32:808–819

    Article  CAS  PubMed  Google Scholar 

  32. Yuan BF (2020) Assessment of DNA epigenetic modifications. Chem Res Toxicol 33:695–708

    Article  CAS  PubMed  Google Scholar 

  33. Lan MD, Yuan BF, Feng YQ (2019) Deciphering nucleic acid modifications by chemical derivatization-mass spectrometry analysis. Chin Chem Lett 30:1–6

    Article  CAS  Google Scholar 

  34. Huang W, Qi CB, Lv SW, Xie M, Feng YQ, Huang WH, Yuan BF (2016) Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry. Anal Chem 88:1378–1384

    Article  CAS  PubMed  Google Scholar 

  35. Chen B, Yuan BF, Feng YQ (2019) Analytical methods for deciphering RNA modifications. Anal Chem 91:743–756

    Article  CAS  PubMed  Google Scholar 

  36. Liu FL, Qi CB, Cheng QY, Ding JH, Yuan BF, Feng YQ (2020) Diazo reagent labeling with mass spectrometry analysis for sensitive determination of ribonucleotides in living organisms. Anal Chem 92:2301–2309

    Article  CAS  PubMed  Google Scholar 

  37. Cheng QY, Xiong J, Wang F, Yuan BF, Feng YQ (2018) Chiral derivatization coupled with liquid chromatography/mass spectrometry for determining ketone metabolites of hydroxybutyrate enantiomers. Chin Chem Lett 29:115–118

    Article  CAS  Google Scholar 

  38. Qi CB, Ding JH, Yuan BF, Feng YQ (2019) Analytical methods for locating modifications in nucleic acids. Chin Chem Lett 30:1618–1626

    Article  CAS  Google Scholar 

  39. Qi CB, Jiang HP, Xiong J, Yuan BF, Feng YQ (2019) On-line trapping/capillary hydrophilic-interaction liquid chromatography/mass spectrometry for sensitive determination of RNA modifications from human blood. Chin Chem Lett 30:553–557

    Article  CAS  Google Scholar 

  40. You XJ, Liu T, Ma CJ, Qi CB, Tong Y, Zhao X, Yuan BF, Feng YQ (2019) Determination of RNA hydroxylmethylation in mammals by mass spectrometry analysis. Anal Chem 91:10477–10483

    Article  CAS  PubMed  Google Scholar 

  41. Tang Y, Zheng SJ, Qi CB, Feng YQ, Yuan BF (2015) Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Anal Chem 87:3445–3452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (22074110, 21672166, 21721005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Feng Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cheng, QY., Yuan, BF. (2022). Determination of Cytosine Modifications in DNA by Chemical Labeling-Mass Spectrometry Analysis. In: Yuan, BF. (eds) DNA Modification Detection Methods . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1229-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1229-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1228-6

  • Online ISBN: 978-1-0716-1229-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics