Skip to main content

Pathophysiology of Grey Matter Affection in MS

  • Protocol
  • First Online:
Translational Methods for Multiple Sclerosis Research

Part of the book series: Neuromethods ((NM,volume 166))

  • 440 Accesses

Abstract

There is a striking relationship between cognitive performance, such as executive function, attention and motor processing, and grey matter (GM) surface- and voxel-based morphometric measures, as derived from magnetic resonance imaging (MRI). In addition, loss of GM has shown to be a reliable index of atrophy in neurological diseases, including multiple sclerosis (MS). Therefore, morphometric measures are highly valuable tools to noninvasively study brain pathology.

Among different MRI morphometric measures, cortical thinning has gained great importance for characterizing neurodegeneration in MS . While measures of dendrite density and myelin content assess further processes of GM pathology . Hence, MRI is a unique and versatile, noninvasive method for computer-aided lesion detection and brain-wide evaluation of the pathogenic neurodegenerative process in MS .

This chapter provides an overview of quantitative image analysis methods used to investigate GM pathology in MS and how to derive them, while describing the potential of inferring microstructural changes based on the microscopic and mesoscopic measurements obtained from MRI acquisitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arshad M, Stanley JA, Raz N (2017) Test-retest reliability and concurrent validity of in vivo myelin content indices: myelin water fraction and calibrated T1 w/T2 w image ratio. Hum Brain Mapp 38:1780–1790

    Article  PubMed  Google Scholar 

  2. Ashburner J (2009) Computational anatomy with the SPM software. Magn Reson Imaging 27:1163–1174

    Article  PubMed  Google Scholar 

  3. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38:95–113

    Article  PubMed  Google Scholar 

  4. Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. NeuroImage 11:805–821

    Article  CAS  PubMed  Google Scholar 

  5. Avants BB, Tustison NJ, Song G et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54:2033–2044

    Article  PubMed  Google Scholar 

  6. Baecher-Allan C, Kaskow BJ, Weiner HL (2018) Multiple sclerosis: mechanisms and immunotherapy. Neuron 97:742–768

    Article  CAS  PubMed  Google Scholar 

  7. Bagnato F, Franco G, Ye F et al (2019) Selective inversion recovery quantitative magnetization transfer imaging: toward a 3 T clinical application in multiple sclerosis. Mult Scler 26(4):457–467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Barkhof F, Calabresi PA, Miller DH et al (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5:256–266

    Article  PubMed  Google Scholar 

  9. Basser PJ, Mattiello J, Lebihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  CAS  PubMed  Google Scholar 

  10. Basser PJ, Mattiello J, Lebihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calabrese M, Agosta F, Rinaldi F et al (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66:1144–1150

    Article  PubMed  Google Scholar 

  12. Calabrese M, Magliozzi R, Ciccarelli O et al (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16:147–158

    Article  CAS  PubMed  Google Scholar 

  13. Calabrese M, Rinaldi F, Seppi D et al (2011) Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study. Radiology 261:891–898

    Article  PubMed  Google Scholar 

  14. Calabrese M, Romualdi C, Poretto V et al (2013) The changing clinical course of multiple sclerosis: a matter of gray matter. Ann Neurol 74:76–83

    Article  PubMed  Google Scholar 

  15. Cavallari M, Ceccarelli A, Wang GY et al (2014) Microstructural changes in the striatum and their impact on motor and neuropsychological performance in patients with multiple sclerosis. PLoS One 9:e101199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cerqueira JJ, Compston DS, Geraldes R et al (2018) Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? J Neurol Neurosurg Psychiatry 89:844–850

    Article  PubMed  Google Scholar 

  17. Chard DT, Griffin CM, Rashid W et al (2004) Progressive grey matter atrophy in clinically early relapsing-remitting multiple sclerosis. Mult Scler 10:387–391

    Article  CAS  PubMed  Google Scholar 

  18. Ciccarelli O, Werring D, Wheeler-Kingshott C et al (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933

    Article  CAS  PubMed  Google Scholar 

  19. Collins DL, Neelin P, Peters TM et al (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  CAS  PubMed  Google Scholar 

  20. Daducci A, Canales-Rodriguez EJ, Zhang H et al (2015) Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data. NeuroImage 105:32–44

    Article  PubMed  Google Scholar 

  21. Dahnke R, Yotter RA, Gaser C (2013) Cortical thickness and central surface estimation. NeuroImage 65:336–348

    Article  PubMed  Google Scholar 

  22. Dalton CM, Chard DT, Davies GR et al (2004) Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 127:1101–1107

    Article  PubMed  Google Scholar 

  23. De Stefano N, Giorgio A, Battaglini M et al (2010) Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 74:1868–1876

    Article  PubMed  Google Scholar 

  24. De Stefano N, Matthews PM, Filippi M et al (2003) Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60:1157–1162

    Article  PubMed  Google Scholar 

  25. Derakhshan M, Caramanos Z, Narayanan S et al (2014) Surface-based analysis reveals regions of reduced cortical magnetization transfer ratio in patients with multiple sclerosis: a proposed method for imaging subpial demyelination. Hum Brain Mapp 35:3402–3413

    Article  PubMed  Google Scholar 

  26. Dinkler M (1904) Zur Kasuistik der multiplen Herdsklerose des Gehirns und Ruckenmarks. Deuts Zeits f Nervenheilk 26:233–247

    Article  Google Scholar 

  27. Dutta R, Chen J, Ohno N et al (2017) Axonal loss and Neurodegeneration in multiple sclerosis. Neurodegeneration 238–247

    Google Scholar 

  28. Duval T, Stikov N, Cohen-Adad J (2016) Modeling white matter microstructure. Funct Neurol 31:217–228

    CAS  PubMed  Google Scholar 

  29. Ellwardt E, Pramanik G, Luchtman D et al (2018) Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nat Neurosci 21:1392

    Article  CAS  PubMed  Google Scholar 

  30. Enzinger C, Barkhof F, Ciccarelli O et al (2015) Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat Rev Neurol 11:676–686

    Article  PubMed  Google Scholar 

  31. Eshaghi A, Prados F, Brownlee WJ et al (2018) Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol 83:210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Filippi M, Bar-Or A, Piehl F et al (2018) Multiple sclerosis. Nat Rev Dis Primers 4:43

    Article  PubMed  Google Scholar 

  33. Fischl B (2012) FreeSurfer. NeuroImage 62:774–781

    Article  PubMed  Google Scholar 

  34. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fleischer V, Radetz A, Ciolac D et al (2019) Graph theoretical framework of brain networks in multiple sclerosis: a review of concepts. Neuroscience 403:35–53

    Article  CAS  PubMed  Google Scholar 

  36. Focke NK, Trost S, Paulus W et al (2014) Do manual and voxel-based morphometry measure the same? A proof of concept study. Front Psych 5:39

    Google Scholar 

  37. Friese MA (2016) Widespread synaptic loss in multiple sclerosis. Brain 139:2–4

    Article  PubMed  Google Scholar 

  38. Fukutomi H, Glasser MF, Murata K et al (2019) Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter. Sci Rep 9:12246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fukutomi H, Glasser MF, Zhang H et al (2018) Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. NeuroImage 182:488–499

    Article  PubMed  Google Scholar 

  40. Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez-Escamilla G, Ciolac D, De Santis S, et al (2020) Gray matter network reorganization in multiple sclerosis from 7-Tesla and 3-Tesla MRI data. Ann Clin Transl Neurol 7:543–553

    Google Scholar 

  42. Good CD, Johnsrude I, Ashburner J et al (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage 14:685–700

    Article  CAS  PubMed  Google Scholar 

  43. Grussu F, Schneider T, Tur C et al (2017) Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? Ann Clin Transl Neurol 4:663–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hannoun S, Durand-Dubief F, Confavreux C et al (2012) Diffusion tensor-MRI evidence for extra-axonal neuronal degeneration in caudate and thalamic nuclei of patients with multiple sclerosis. AJNR Am J Neuroradiol 33:1363–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasan KM, Halphen C, Kamali A et al (2009) Caudate nuclei volume, diffusion tensor metrics, and T(2) relaxation in healthy adults and relapsing-remitting multiple sclerosis patients: implications for understanding gray matter degeneration. J Magn Reson Imaging 29:70–77

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heidker RM, Emerson MR, Levine SM (2017) Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis. Neural Regen Res 12:1262–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Helms G (2015) Tissue properties from quantitative MRI. In: Toga AW (ed) Brain mapping: an encyclopedic reference, vol 1. Elsevier, San Diego, CA, pp 287–294

    Chapter  Google Scholar 

  48. Henstridge CM, Tzioras M, Paolicelli RC (2019) Glial contribution to excitatory and inhibitory synapse loss in Neurodegeneration. Front Cell Neurosci 13:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jenkinson M, Beckmann CF, Behrens TE et al (2012) FSL. NeuroImage 62:782–790

    Article  PubMed  Google Scholar 

  50. Jiang H, Van Zijl PC, Kim J et al (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Prog Biomed 81:106–116

    Article  Google Scholar 

  51. Jurgens T, Jafari M, Kreutzfeldt M et al (2016) Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain 139:39–46

    Article  PubMed  Google Scholar 

  52. Kim JS, Singh V, Lee JK et al (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. NeuroImage 27:210–221

    Article  PubMed  Google Scholar 

  53. Krämer J, Brück W, Zipp F et al (2019) Imaging in mice and men: pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol 182:101663

    Article  PubMed  Google Scholar 

  54. Ksiazek-Winiarek DJ, Szpakowski P, Glabinski A (2015) Neural plasticity in multiple sclerosis: the functional and molecular background. Neural Plast 2015:307175

    Article  PubMed  PubMed Central  Google Scholar 

  55. Leemans A, Jeurissen B, Sijbers J et al (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc Intl Soc Mag Reson Med 17:3537

    Google Scholar 

  56. Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage 24:163–173

    Article  PubMed  Google Scholar 

  57. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21:163–169

    Article  Google Scholar 

  58. Mckeithan LJ, Lyttle BD, Box BA et al (2019) 7T quantitative magnetization transfer (qMT) of cortical gray matter in multiple sclerosis correlates with cognitive impairment. NeuroImage 203:116190

    Article  PubMed  Google Scholar 

  59. Mollink J, Kleinnijenhuis M, Cappellen Van Walsum AV et al (2017) Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging. NeuroImage 157:561–574

    Article  PubMed  Google Scholar 

  60. Nakamura K, Chen JT, Ontaneda D et al (2017) T1-/T2-weighted ratio differs in demyelinated cortex in multiple sclerosis. Ann Neurol 82:635–639

    Article  CAS  PubMed  Google Scholar 

  61. Nelson F, Datta S, Garcia N et al (2011) Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis. Mult Scler 17:1122–1129

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    Article  CAS  PubMed  Google Scholar 

  63. Radetz A, Koirala N, Kraemer J et al (2020) Gray matter integrity predicts white matter network reorganization in multiple sclerosis. Hum Brain Mapp 41:917–927

    Google Scholar 

  64. Radua J, Canales-Rodriguez EJ, Pomarol-Clotet E et al (2014) Validity of modulation and optimal settings for advanced voxel-based morphometry. NeuroImage 86:81–90

    Article  PubMed  Google Scholar 

  65. Righart R, Biberacher V, Jonkman LE et al (2017) Cortical pathology in multiple sclerosis detected by the T1/T2-weighted ratio from routine magnetic resonance imaging. Ann Neurol 82:519–529

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rocca MA, Sormani MP, Rovaris M et al (2017) Long-term disability progression in primary progressive multiple sclerosis: a 15-year study. Brain 140:2814–2819

    Article  PubMed  Google Scholar 

  67. Rodriguez EG, Wegner C, Kreutzfeldt M et al (2014) Oligodendroglia in cortical multiple sclerosis lesions decrease with disease progression, but regenerate after repeated experimental demyelination. Acta Neuropathol 128:231–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roosendaal SD, Moraal B, Pouwels PJ et al (2009) Accumulation of cortical lesions in MS: relation with cognitive impairment. Mult Scler 15:708–714

    Article  CAS  PubMed  Google Scholar 

  69. Sailer M, Fischl B, Salat D et al (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126:1734–1744

    Article  PubMed  Google Scholar 

  70. Sander M (1898) Hirnrindenbefunde bei multipler Sklerose. Eur Neurol 4:427–436

    Article  Google Scholar 

  71. Schmierer K, Tozer DJ, Scaravilli F et al (2007) Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 26:41–51

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schob F (1907) Ein Beitrag zur pathologischen Anatomie der multiplen Sklerose. Eur Neurol 22:62–87

    Article  Google Scholar 

  73. Schoonheim MM, Meijer KA, Geurts JJ (2015) Network collapse and cognitive impairment in multiple sclerosis. Front Neurol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schumacher AM, Mahler C, Kerschensteiner M (2017) Pathology and pathogenesis of progressive multiple sclerosis: concepts and controversies. Aktuel Neurol 44:476–488

    Article  Google Scholar 

  75. Shiee N, Bazin PL, Zackowski KM et al (2012) Revisiting brain atrophy and its relationship to disability in multiple sclerosis. PLoS One 7:e37049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spano B, Giulietti G, Pisani V et al (2018) Disruption of neurite morphology parallels MS progression. Neurol Neuroimmunol Neuroinflamm 5:e502

    Article  PubMed  PubMed Central  Google Scholar 

  77. Steenwijk MD, Geurts JJ, Daams M et al (2016) Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 139:115–126

    Article  PubMed  Google Scholar 

  78. Tournier J-D, Smith R, Raffelt D et al (2019) MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202:116137

    Article  PubMed  Google Scholar 

  79. Trapp BD, Vignos M, Dudman J et al (2018) Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol 17:870–884

    Article  PubMed  PubMed Central  Google Scholar 

  80. Triarhou LC (2008) The 107 cortical cytoarchitectonic areas of Constantin Von Economo and Georg N. Koskinas in the Adult human brain: excerpt from: “Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex”, Authors, Von Economo, C.(Vienna), Koskinas, GN (Athens). Karger

    Google Scholar 

  81. Tustison NJ, Avants BB (2013) Explicit B-spline regularization in diffeomorphic image registration. Front Neuroinform 7:39

    Article  PubMed  PubMed Central  Google Scholar 

  82. Van Essen DC (2005) A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. NeuroImage 28:635–662

    Article  PubMed  Google Scholar 

  83. Wang WY, Yu JT, Liu Y et al (2015) Voxel-based meta-analysis of grey matter changes in Alzheimer’s disease. Transl Neurodegener 4:6

    Article  PubMed  PubMed Central  Google Scholar 

  84. Winkler AM, Greve DN, Bjuland KJ et al (2018) Joint analysis of cortical area and thickness as a replacement for the analysis of the volume of the cerebral cortex. Cereb Cortex 28:738–749

    Article  PubMed  Google Scholar 

  85. Winkler AM, Sabuncu MR, Yeo BT et al (2012) Measuring and comparing brain cortical surface area and other areal quantities. NeuroImage 61:1428–1443

    Article  PubMed  Google Scholar 

  86. Winkler AM, Webster MA, Brooks JC et al (2016) Non-parametric combination and related permutation tests for neuroimaging. Hum Brain Mapp 37:1486–1511

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yotter RA, Dahnke R, Thompson PM et al (2011) Topological correction of brain surface meshes using spherical harmonics. Hum Brain Mapp 32:1109–1124

    Article  PubMed  Google Scholar 

  88. Yotter RA, Thompson PM, Gaser C (2011) Algorithms to improve the reparameterization of spherical mappings of brain surface meshes. J Neuroimaging 21:e134–e147

    Article  PubMed  Google Scholar 

  89. Zhang H, Schneider T, Wheeler-Kingshott CA et al (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61:1000–1016

    Article  PubMed  Google Scholar 

  90. Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21:1280–1291

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Gonzalez-Escamilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez-Escamilla, G., Ciolac, D. (2021). Pathophysiology of Grey Matter Affection in MS. In: Groppa, S., G. Meuth, S. (eds) Translational Methods for Multiple Sclerosis Research. Neuromethods, vol 166. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1213-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1213-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1212-5

  • Online ISBN: 978-1-0716-1213-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics