Skip to main content

Functional Studies in Rodents

  • Protocol
  • First Online:
Translational Methods for Multiple Sclerosis Research

Part of the book series: Neuromethods ((NM,volume 166))

  • 395 Accesses

Abstract

Anatomical MRI is well established in the diagnosis of MS in humans and in rodent models. In contrast, functional MRI is not routinely established in rodent models of MS. In this chapter, we introduce the major MRI methods and analysis approaches used to study brain function in healthy animals and in neuropathological disease models. We highlight differences in relation to human MRI, for example the hardware requirements for rodent MRI, and the specific issues associated with the need for anesthesia, regarding animal physiology and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakshi R, Thompson AJ, Rocca MA et al (2008) MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 7(7):615–625. https://doi.org/10.1016/S1474-4422(08)70137-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nathoo N, Yong VW, Dunn JF (2014) Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. NeuroImage Clin 4:743–756. https://doi.org/10.1016/j.nicl.2014.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  3. Albers F, Wachsmuth L, van Alst TM, Faber C (2018) Multimodal functional neuroimaging by simultaneous BOLD fMRI and fiber-optic calcium recordings and optogenetic control. Mol Imaging Biol 20(2):171–182. https://doi.org/10.1007/s11307-017-1130-6

    Article  CAS  PubMed  Google Scholar 

  4. Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22(8):834–842. https://doi.org/10.1002/nbm.1396

    Article  PubMed  Google Scholar 

  5. Duong TQ, Yacoub E, Adriany G et al (2002) High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48(4):589–593. https://doi.org/10.1002/mrm.10252

    Article  PubMed  Google Scholar 

  6. Báez-Yánez MG, Ehses P, Mirkes C, Tsai PS, Kleinfeld D, Scheffler K (2017) The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI. NeuroImage 163:13–23. https://doi.org/10.1016/j.neuroimage.2017.09.015

    Article  PubMed  Google Scholar 

  7. Lu H, van Zijl PCM (2012) A review of the development of vascular-space-occupancy (VASO) fMRI. NeuroImage 62(2):736–742. https://doi.org/10.1016/j.neuroimage.2012.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mandeville JB, Marota JJA, Kosofsky BE et al (1998) Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 39(4):615–624. https://doi.org/10.1002/mrm.1910390415

    Article  CAS  PubMed  Google Scholar 

  9. Chuang KH, van Gelderen P, Merkle H et al (2008) Mapping resting-state functional connectivity using perfusion MRI. NeuroImage 40(4):1595–1605. https://doi.org/10.1016/j.neuroimage.2008.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Larkin JR, Simard MA, Khrapitchev AA et al (2018) Quantitative blood flow measurement in rat brain with multiphase arterial spin labelling magnetic resonance imaging. J Cereb Blood Flow Metab 39(8):1557–1569. https://doi.org/10.1177/0271678X18756218

    Article  PubMed  PubMed Central  Google Scholar 

  11. Le BD (2007) The “wet mind”: water and functional neuroimaging. Phys Med Biol 52(7):R57–R90

    Article  Google Scholar 

  12. Aso T, Urayama SI, Fukuyama H, Le Bihan D (2013) Comparison of diffusion-weighted fMRI and BOLD fMRI responses in a verbal working memory task. NeuroImage 67:25–32. https://doi.org/10.1016/j.neuroimage.2012.11.005

    Article  PubMed  Google Scholar 

  13. Albers F, Wachsmuth L, Schache D, Lambers H, Faber C (2019) Functional MRI readouts from BOLD and diffusion measurements differentially respond to optogenetic activation and tissue heating. Front Neurosci 13:1–16. https://doi.org/10.3389/fnins.2019.01104

    Article  Google Scholar 

  14. Lin YJ, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38(3):378–388. https://doi.org/10.1002/mrm.1910380305

    Article  CAS  PubMed  Google Scholar 

  15. Niehoff AC, Wachsmuth L, Schmid F, Sperling M, Faber C, Karst U (2016) Quantification of manganese enhanced magnetic resonance imaging based on spatially resolved elemental mass spectrometry. ChemistrySelect 1(2):264–266. https://doi.org/10.1002/slct.201600058

    Article  CAS  Google Scholar 

  16. Eschenko O, Canals S, Simanova I, Beyerlein M, Murayama Y, Logothetis NK (2010) Mapping of functional brain activity in freely behaving rats during voluntary running using manganese-enhanced MRI: implication for longitudinal studies. NeuroImage 49(3):2544–2555. https://doi.org/10.1016/j.neuroimage.2009.10.079

    Article  CAS  PubMed  Google Scholar 

  17. Van der Linden A, Van Meir V, Tindemans I, Verhoye M, Balthazart J (2004) Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed 17(8):602–612. https://doi.org/10.1002/nbm.936

    Article  CAS  PubMed  Google Scholar 

  18. Sudarshana DM, Nair G, Dwyer JT et al (2019) Manganese-enhanced MRI of the brain in healthy volunteers. Am J Neuroradiol 40(8):1309–1316. https://doi.org/10.3174/ajnr.a6152

    Article  CAS  PubMed  Google Scholar 

  19. Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Gröhn O (2018) Functional connectivity under six anesthesia protocols and the awake condition in rat brain. NeuroImage 172:9–20. https://doi.org/10.1016/j.neuroimage.2018.01.014

    Article  PubMed  Google Scholar 

  20. van Alst TM, Wachsmuth L, Datunashvili M et al (2019) Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal. NeuroImage 195:89–103. https://doi.org/10.1016/j.neuroimage.2019.03.057

    Article  PubMed  Google Scholar 

  21. Fukuda M, Vazquez AL, Zong X, Kim SG (2013) Effects of the α2-adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. Eur J Neurosci 37(1):80–95. https://doi.org/10.1111/ejn.12024

    Article  PubMed  Google Scholar 

  22. Gao YR, Ma Y, Zhang Q et al (2017) Time to wake up: studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. NeuroImage 153:382–398. https://doi.org/10.1016/j.neuroimage.2016.11.069

    Article  PubMed  Google Scholar 

  23. Stenroos P, Paasonen J, Salo RA et al (2018) Awake rat brain functional magnetic resonance imaging using standard radio frequency coils and a 3D printed restraint kit. Front Neurosci 12:548. https://doi.org/10.3389/fnins.2018.00548

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thal SC, Plesnila N (2007) Non-invasive intraoperative monitoring of blood pressure and arterial pCO2 during surgical anesthesia in mice. J Neurosci Methods 159(2):261–267. https://doi.org/10.1016/j.jneumeth.2006.07.016

    Article  PubMed  Google Scholar 

  25. Vanhoutte G, Verhoye M, Van Der Linden A (2006) Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity. Magn Reson Med 55(5):1006–1012. https://doi.org/10.1002/mrm.20861

    Article  CAS  PubMed  Google Scholar 

  26. Margulies DS, Böttger J, Long X et al (2010) Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. Magn Reson Mater Phys Biol Med 23(5-6):289–307. https://doi.org/10.1007/s10334-010-0228-5

    Article  Google Scholar 

  27. Schwarz AJ, Danckaert A, Reese T et al (2006) A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. NeuroImage 32(2):538–550. https://doi.org/10.1016/j.neuroimage.2006.04.214

    Article  PubMed  Google Scholar 

  28. Schweinhardt P, Fransson P, Olson L, Spenger C, Andersson JLR (2003) A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods 129(2):105–113. https://doi.org/10.1016/S0165-0270(03)00192-4

    Article  PubMed  Google Scholar 

  29. Friston KJ, Frith CD, Turner R, Frackowiak RSJ (1995) Characterizing evoked hemodynamics with fMRI. NeuroImage 2(2):157–165. https://doi.org/10.1006/nimg.1995.1018

    Article  CAS  PubMed  Google Scholar 

  30. Silva AC, Koretsky AP, Duyn JH (2007) Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex. Magn Reson Med 57(6):1110–1118. https://doi.org/10.1002/mrm.21246

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Zwart JA, Silva AC, Van Gelderen P et al (2005) Temporal dynamics of the BOLD fMRI impulse response. NeuroImage 24(3):667–677. https://doi.org/10.1016/j.neuroimage.2004.09.013

    Article  PubMed  Google Scholar 

  32. Masamoto K, Kanno I (2012) Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32(7):1233–1247. https://doi.org/10.1038/jcbfm.2012.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schlegel F, Schroeter A, Rudin M (2015) The hemodynamic response to somatosensory stimulation in mice depends on the anesthetic used: implications on analysis of mouse fMRI data. NeuroImage 116:40–49. https://doi.org/10.1016/j.neuroimage.2015.05.013

    Article  PubMed  Google Scholar 

  34. Albers F, Schmid F, Wachsmuth L, Faber C (2018) Line scanning fMRI reveals earlier onset of optogenetically evoked BOLD response in rat somatosensory cortex as compared to sensory stimulation. NeuroImage 164:144–154. https://doi.org/10.1016/j.neuroimage.2016.12.059

    Article  PubMed  Google Scholar 

  35. Vazquez AL, Noll DC (1998) Nonlinear aspects of the BOLD response in functional MRI. NeuroImage 7(2):108–118. https://doi.org/10.1006/nimg.1997.0316

    Article  CAS  PubMed  Google Scholar 

  36. Lambers H, Segeroth M, Albers F, Wachsmuth L, van Alst TM, Faber C (2020) A cortical rat hemodynamic response function for improved detection of BOLD activation under common experimental conditions. NeuroImage 208:116446. https://doi.org/10.1016/j.neuroimage.2019.116446

    Article  PubMed  Google Scholar 

  37. Kreitz S, Alonso B de C, Uder M, Hess A (2018) A new analysis of resting state connectivity and graph theory reveals distinctive short-term modulations due to whisker stimulation in rats. Front Neurosci 12:1–19. https://doi.org/10.3389/fnins.2018.00334

    Article  Google Scholar 

  38. Tambalo S, Peruzzotti-Jametti L, Rigolio R et al (2015) Functional magnetic resonance imaging of rats with experimental autoimmune encephalomyelitis reveals brain cortex remodeling. J Neurosci 35(27):10088–10100. https://doi.org/10.1523/JNEUROSCI.0540-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reddy H (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125(12):2646–2657. https://doi.org/10.1093/brain/awf283

    Article  CAS  PubMed  Google Scholar 

  40. Hübner NS, Mechling AE, Lee H-L et al (2017) The connectomics of brain demyelination: functional and structural patterns in the cuprizone mouse model. NeuroImage 146:1–18. https://doi.org/10.1016/J.NEUROIMAGE.2016.11.008

    Article  PubMed  Google Scholar 

  41. Chen CCV, Zechariah A, Hsu YH, Chen HW, Yang LC, Chang C (2008) Neuroaxonal ion dyshomeostasis of the normal-appearing corpus callosum in experimental autoimmune encephalomyelitis. Exp Neurol 210(2):322–330. https://doi.org/10.1016/j.expneurol.2007.11.008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Wachsmuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wachsmuth, L., Faber, C. (2021). Functional Studies in Rodents. In: Groppa, S., G. Meuth, S. (eds) Translational Methods for Multiple Sclerosis Research. Neuromethods, vol 166. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1213-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1213-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1212-5

  • Online ISBN: 978-1-0716-1213-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics