Skip to main content

Genome-Wide Computational Analysis and Validation of Potential Long Noncoding RNA-Mediated DNA–DNA–RNA Triplexes in the Human Genome

  • Protocol
Functional Analysis of Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2254))

Abstract

Long noncoding RNAs are well studied for their regulatory actions through interaction with DNA regulating biological roles of DNA, RNA, or protein. However, direct binding of lncRNA with DNA is rarely demonstrated in experiments. The present protocol explains genome wide computational strategies to choose lncRNAs that can bind directly to the chromatin by forming highly stable DNA–DNA–RNA triplexes. The chapter also focuses on biophysical methods that can be used to validate the computationally derived lncRNA-gene targets in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    Article  CAS  Google Scholar 

  2. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding. RNAs Cell 136(4):629–641

    Article  CAS  Google Scholar 

  3. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914

    Article  CAS  Google Scholar 

  4. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504

    Article  CAS  Google Scholar 

  5. Jalali S, Kapoor S, Sivadas A et al (2015) Computational approaches towards understanding human long non-coding RNA biology. Bioinformatics 31(14):2241–2251

    Article  CAS  Google Scholar 

  6. Kirsebom LA, Virtanen A, Mikkelsen NE (2006) Aminoglycoside interactions with RNAs and nucleases. Handb Exp Pharmacol 173:73–96

    Article  CAS  Google Scholar 

  7. Okazaki Y, Furuno M, Kasukawa T et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60770 full-length cDNAs. Nature 420(6915):563–573

    Article  Google Scholar 

  8. Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693

    Article  CAS  Google Scholar 

  9. Li Y, Syed J, Sugiyama H (2016) RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 23(11):1325–1333

    Article  CAS  Google Scholar 

  10. Chu C, Qu K, Zhong FL et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4):667–678

    Article  CAS  Google Scholar 

  11. Mondal T, Subhash S, Vaid R, Enroth S et al (2015) MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6:7743

    Article  CAS  Google Scholar 

  12. Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L et al (2015) LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol Cell 60(4):626–636

    Article  CAS  Google Scholar 

  13. Brown JA, Valenstein ML, Yario TA et al (2012) Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci U S A 109(47):19202–19207

    Article  CAS  Google Scholar 

  14. Bacolla A, Wang G, Vasquez KM (2015) New perspectives on DNA and RNA triplexes as effectors of biological activity. PLoS Genet 11(12):e1005696

    Article  Google Scholar 

  15. Roberts RW, Crothers DM (1992) Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science (New York, NY) 258(5087):1463–1466

    Article  CAS  Google Scholar 

  16. Hoyne PR, Gacy AM, McMurray CT et al (2000) Stabilities of intrastrand pyrimidine motif DNA and RNA triple helices. Nucleic Acids Res 28(3):770–775

    Article  CAS  Google Scholar 

  17. Buske FA, Bauer DC, Mattick JS et al (2012) Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 22(7):1372–1381

    Article  CAS  Google Scholar 

  18. Wongsurawat T, Jenjaroenpun P, Kwoh CK et al (2012) Quantitative model of R-loop forming structures reveals a novel level of RNA-DNA interactome complexity. Nucleic Acids Res 40(2):e16

    Article  CAS  Google Scholar 

  19. Buske FA, Bauer DC, Mattick JS et al (2013) Triplex-inspector: an analysis tool for triplex-mediated targeting of genomic loci. Bioinformatics 29(15):1895–1897

    Article  CAS  Google Scholar 

  20. Buske FA, Mattick JS, Bailey TL (2011) Potential in vivo roles of nucleic acid triple-helices. RNA Biol 8(3):427–439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CSIR-IGIB grant number OLP1144.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinod Scaria or Souvik Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Jalali, S., Singh, A., Scaria, V., Maiti, S. (2021). Genome-Wide Computational Analysis and Validation of Potential Long Noncoding RNA-Mediated DNA–DNA–RNA Triplexes in the Human Genome. In: Cao, H. (eds) Functional Analysis of Long Non-Coding RNAs. Methods in Molecular Biology, vol 2254. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1158-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1158-6_5

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1157-9

  • Online ISBN: 978-1-0716-1158-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics