Skip to main content

Genome-Wide Noninvasive Prenatal Diagnosis of SNPs and Indels

  • Protocol
  • First Online:
Deep Sequencing Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2243))

Abstract

Noninvasive prenatal diagnosis (NIPD) is an emerging field, that enables testing for diseases in the fetus with no risk to the pregnancy, compared to invasive methods (e.g., amniocentesis). The procedure is based on the presence of fetal DNA within the mother’s plasma cell-free DNA (cfDNA). Today, NIPD is performed for chromosomal abnormalities (e.g., Down syndrome) and some large deletions/duplications. It is also available for point mutations but is limited for one mutation or up to several genes simultaneously. Genome-wide detection of fetal point mutations was presented in a few studies, and the first software tool for this task, Hoobari, has recently become available. Here we describe the necessary steps in genome-wide noninvasive fetal genotyping, including examples using the Hoobari software. We discuss the various materials, software, computational infrastructure, and samples required for this analysis. Genome-wide analysis of point mutations in the fetus is not widely studied, albeit much space for algorithmic improvements exists. Here we suggest practical solutions for challenges along the process. Our work assists bioinformaticians in accessing NIPD data analysis and can eventually be utilized for other cfDNA-related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akolekar R, Beta J, Picciarelli G et al (2015) Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45:16–26. https://doi.org/10.1002/uog.14636

    Article  CAS  PubMed  Google Scholar 

  2. Tabor A, Alfirevic Z (2010) Update on procedure-related risks for prenatal diagnosis techniques. FDT 27:1–7. https://doi.org/10.1159/000271995

    Article  Google Scholar 

  3. Zelig CM, Knutzen DM, Ennen CS et al (2016) Chorionic villus sampling, early amniocentesis, and termination of pregnancy without diagnostic testing: comparison of fetal risk following positive non-invasive prenatal testing. J Obstet Gynaecol Can 38:441–445.e2. https://doi.org/10.1016/j.jogc.2016.03.006

    Article  PubMed  Google Scholar 

  4. Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487. https://doi.org/10.1016/S0140-6736(97)02174-0

    Article  CAS  PubMed  Google Scholar 

  5. Chiu RWK, Chan KCA, Gao Y et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A 105:20458–20463. https://doi.org/10.1073/pnas.0810641105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lo YMD, Lun FMF, Chan KCA et al (2007) Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci U S A 104:13116–13121. https://doi.org/10.1073/pnas.0705765104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Papageorgiou EA, Patsalis PC (2012) Non-invasive prenatal diagnosis of aneuploidies: new technologies and clinical applications. Genome Med 4:46. https://doi.org/10.1186/gm345

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fan HC, Blumenfeld YJ, Chitkara U et al (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A 105:16266–16271. https://doi.org/10.1073/pnas.0808319105

    Article  PubMed  PubMed Central  Google Scholar 

  9. van der Meij KRM, Sistermans EA, Macville MVE et al (2019) TRIDENT-2: national implementation of genome-wide non-invasive prenatal testing as a first-tier screening test in the Netherlands. Am J Hum Genet 105:1091–1101. https://doi.org/10.1016/j.ajhg.2019.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chu T, Yeniterzi S, Rajkovic A et al (2014) High resolution non-invasive detection of a fetal microdeletion using the GCREM algorithm. Prenat Diagn 34:469–477. https://doi.org/10.1002/pd.4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jensen TJ, Dzakula Z, Deciu C et al (2012) Detection of microdeletion 22q11.2 in a fetus by next-generation sequencing of maternal plasma. Clin Chem 58:1148–1151. https://doi.org/10.1373/clinchem.2011.180794

    Article  CAS  PubMed  Google Scholar 

  12. Peters D, Chu T, Yatsenko SA et al (2011) Noninvasive prenatal diagnosis of a fetal microdeletion syndrome. N Engl J Med 365:1847–1848. https://doi.org/10.1056/NEJMc1106975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neofytou MC, Tsangaras K, Kypri E et al (2017) Targeted capture enrichment assay for non-invasive prenatal testing of large and small size sub-chromosomal deletions and duplications. PLoS One 12:e0171319. https://doi.org/10.1371/journal.pone.0171319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perlado S, Bustamante-Aragonés A, Donas M et al (2016) Fetal genotyping in maternal blood by digital PCR: towards NIPD of monogenic disorders independently of parental origin. PLoS One 11:e0153258. https://doi.org/10.1371/journal.pone.0153258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lam K-WG, Jiang P, Liao GJW et al (2012) Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to β-thalassemia. Clin Chem 58:1467–1475. https://doi.org/10.1373/clinchem.2012.189589

    Article  CAS  PubMed  Google Scholar 

  16. Jenkins LA, Deans ZC, Lewis C, Allen S (2017) Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders, and recommendations for best practice. Prenat Diagn. https://doi.org/10.1002/pd.5197

  17. Hayward J, Chitty LS (2018) Beyond screening for chromosomal abnormalities: advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin Fetal Neonatal Med 23(2):94–101. https://doi.org/10.1016/j.siny.2017.12.002

    Article  PubMed  Google Scholar 

  18. Drury S, Williams H, Trump N et al (2015) Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn 35:1010–1017. https://doi.org/10.1002/pd.4675

    Article  CAS  PubMed  Google Scholar 

  19. Best S, Wou K, Vora N et al (2018) Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn 38:10–19. https://doi.org/10.1002/pd.5102

    Article  CAS  PubMed  Google Scholar 

  20. Stark Z, Tan TY, Chong B et al (2016) A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med 18:1090. https://doi.org/10.1038/gim.2016.1

    Article  CAS  PubMed  Google Scholar 

  21. Mackie FL, Carss KJ, Hillman SC et al (2014) Exome sequencing in fetuses with structural malformations. J Clin Med 3:747–762. https://doi.org/10.3390/jcm3030747

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lo YMD, Chan KCA, Sun H et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2:61ra91. https://doi.org/10.1126/scitranslmed.3001720

    Article  CAS  PubMed  Google Scholar 

  23. Fan HC, Gu W, Wang J et al (2012) Non-invasive prenatal measurement of the fetal genome. Nature 487:320–324. https://doi.org/10.1038/nature11251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kitzman JO, Snyder MW, Ventura M et al (2012) Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med 4:137ra76. https://doi.org/10.1126/scitranslmed.3004323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Snyder MW, Adey A, Kitzman JO, Shendure J (2015) Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet 16:344–358. https://doi.org/10.1038/nrg3903

    Article  CAS  PubMed  Google Scholar 

  26. Chan KCA, Jiang P, Sun K et al (2016) Second generation noninvasive fetal genome analysis reveals de novo mutations, single-base parental inheritance, and preferred DNA ends. Proc Natl Acad Sci U S A 113(50):E8159–E8168. https://doi.org/10.1073/pnas.1615800113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rabinowitz T, Polsky A, Golan D et al (2019) Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res https://doi.org/10.1101/gr.235796.118

  28. Sillence K (2016) Cell-free fetal DNA (cffDNA) enrichment for non-invasive prenatal testing (NIPT): a comparison of molecular techniques

    Google Scholar 

  29. Bianchi DW, Chiu RWK (2018) Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med 379:464–473. https://doi.org/10.1056/NEJMra1705345

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Faust GG, Hall IM (2014) SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30:2503–2505. https://doi.org/10.1093/bioinformatics/btu314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tarasov A, Vilella AJ, Cuppen E et al (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034. https://doi.org/10.1093/bioinformatics/btv098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garrison E (2012) freebayes: Bayesian haplotype-based genetic polymorphism discovery and genotyping

    Google Scholar 

  35. Mardy A, Wapner RJ (2016) Confined placental mosaicism and its impact on confirmation of NIPT results. Am J Med Genet C Semin Med Genet 172:118–122. https://doi.org/10.1002/ajmg.c.31505

    Article  PubMed  Google Scholar 

  36. Ashoor G, Syngelaki A, Poon LCY et al (2013) Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 41:26–32. https://doi.org/10.1002/uog.12331

    Article  CAS  PubMed  Google Scholar 

  37. Hu P, Liang D, Chen Y et al (2019) An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: a feasibility study. J Transl Med 17:124. https://doi.org/10.1186/s12967-019-1871-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jorgez CJ, Bischoff FZ (2009) Improving enrichment of circulating fetal DNA for genetic testing: size fractionation followed by whole gene amplification. FDT 25:314–319. https://doi.org/10.1159/000235877

    Article  Google Scholar 

  39. Webb A, Madgett T, Miran T et al (2012) Non invasive prenatal diagnosis of aneuploidy: next generation sequencing or fetal DNA enrichment? Balkan J Med Genet 15:17–26. https://doi.org/10.2478/v10034-012-0013-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng XL, Jiang P (2017) Bioinformatics approaches for fetal DNA fraction estimation in noninvasive prenatal testing. Int J Mol Sci 18:453. https://doi.org/10.3390/ijms18020453

    Article  CAS  PubMed Central  Google Scholar 

  41. Shang J, Zhu F, Vongsangnak W et al (2014) Evaluation and comparison of multiple aligners for next-generation sequencing data analysis. Biomed Res Int 2014(11, supplement):309650. https://www.hindawi.com/journals/bmri/2014/309650/abs/. Accessed 8 Jan 2020

    PubMed  PubMed Central  Google Scholar 

  42. Campbell IM, Gambin T, Jhangiani SN et al (2016) Multiallelic positions in the Human Genome: challenges for genetic analyses. Hum Mutat 37:231–234. https://doi.org/10.1002/humu.22944

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Shomron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rabinowitz, T., Shomron, N. (2021). Genome-Wide Noninvasive Prenatal Diagnosis of SNPs and Indels. In: Shomron, N. (eds) Deep Sequencing Data Analysis. Methods in Molecular Biology, vol 2243. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1103-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1103-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1102-9

  • Online ISBN: 978-1-0716-1103-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics