Skip to main content

CRISPR/Cas9-Mediated Genome Editing of Trichoderma reesei

  • Protocol
  • First Online:
Trichoderma reesei

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2234))

Abstract

In this protocol, we describe the establishment of a CRISPR/Cas9 system in Trichoderma reesei by generating a specific, codon-optimized Cas9-expressing strain and by in vitro transcription of a gRNA. This system induces mutagenesis or introduces a gene in a targeted way based on PEG-mediated protoplast transformation. Up to three targets, multiplexed genome editing can be obtained in one transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e600

    Article  Google Scholar 

  2. Brüggemann H, Lomholt HB, Tettelin H, Kilian M (2012) CRISPR/cas loci of type II Propionibacterium acnes confer immunity against acquisition of mobile elements present in type I P. acnes. PLoS One 7:e34171

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  PubMed  Google Scholar 

  5. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wijshake T, Baker DJ, van de Sluis B (2014) Endonucleases: new tools to edit the mouse genome. Biochim Biophys Acta 1842:1942–1950

    Article  CAS  PubMed  Google Scholar 

  7. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84

    Article  CAS  PubMed  Google Scholar 

  8. Ota S, Hisano Y, Ikawa Y, Kawahara A (2014) Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19:555–564

    Article  CAS  PubMed  Google Scholar 

  9. Nødvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J, Klitgaard DK, Mortensen UH (2018) Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal Genet Biol 115:78–89

    Article  PubMed  Google Scholar 

  10. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    Article  CAS  PubMed  Google Scholar 

  11. Zhong Y, Liu X, Xiao P, Wei S, Wang T (2011) Expression and secretion of the human erythropoietin using an optimized cbh1 promoter and the native CBH I signal sequence in the industrial fungus Trichoderma reesei. Appl Biochem Biotechnol 165:1169–1177

    Article  CAS  PubMed  Google Scholar 

  12. Stricker AR, Steiger MG, Mach RL (2007) Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett 581:3915–3920

    Article  CAS  PubMed  Google Scholar 

  13. Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A (2016) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol 235:139–149

    Article  CAS  PubMed  Google Scholar 

  14. Derntl C, Rassinger A, Srebotnik E, Mach RL, Mach-Aigner AR (2016) Identification of the main regulator responsible for synthesis of the typical yellow pigment produced by Trichoderma reesei. Appl Environ Microbiol 82:6247–6257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu R, Chen L, Jiang YP, Zhou ZH, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sarkari P, Marx H, Blumhoff ML, Mattanovich D, Sauer M, Steiger MG (2017) An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger. Bioresour Technol 245:1327–1333

    Article  CAS  PubMed  Google Scholar 

  18. Matsu-ura T, Baek M, Kwon J, Hong C (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jacobs JZ, Ciccaglione KM, Tournier V, Zaratiegui M (2014) Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun 5:5344

    Article  CAS  PubMed  Google Scholar 

  20. Enkler L, Richer D, Marchand AL, Ferrandon D, Jossinet F (2016) Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system. Sci Rep 6:35766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygård Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764

    Article  CAS  PubMed  Google Scholar 

  22. Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543–2549

    Article  CAS  PubMed  Google Scholar 

  23. Canzler S, Stadler PF, Hertel J (2016) U6 snRNA intron insertion occurred multiple times during fungi evolution. RNA Biol 13:119–127

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 54:698–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz CM, Hussain MS, Blenner M, Wheeldon I (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated menome editing in Yarrowia lipolytica. ACS Synth Biol 5:356–359

    Article  CAS  PubMed  Google Scholar 

  26. Zheng X, Zheng P, Zhang K, Cairns TC, Meyer V, Sun J, Ma Y (2019) 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS Synth Biol 8:1568–1574

    Article  CAS  PubMed  Google Scholar 

  27. Al Abdallah Q, Ge W, Fortwendel JR (2017) A simple and universal system for gene manipulation in Aspergillus fumigatus: in vitro-assembled Cas9-guide RNA ribonucleoproteins coupled with microhomology repair templates. mSphere 2:e00446–e00417

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ram AFJ, Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ (2008) Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc 3:1671–1678

    Article  PubMed  Google Scholar 

  29. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150

    Article  CAS  PubMed  Google Scholar 

  30. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  31. Avis JM, Conn GL, Walker SC (2012) Cis-acting ribozymes for the production of RNA in vitro transcripts with defined 5’ and 3’ ends. Methods Mol Biol 941:83–98

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zou, G., Zhou, Z. (2021). CRISPR/Cas9-Mediated Genome Editing of Trichoderma reesei. In: Mach-Aigner, A.R., Martzy, R. (eds) Trichoderma reesei. Methods in Molecular Biology, vol 2234. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1048-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1048-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1047-3

  • Online ISBN: 978-1-0716-1048-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics