Skip to main content

Generation and Characterization of Inducible Lung and Skin-Specific IL-22 Transgenic Mice

  • Protocol
  • First Online:
  • 1719 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2223))

Abstract

IL-22 is an IL-10 family cytokine that is increased in asthma and atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of allergic lung inflammation and AD in vivo has yet to be elucidated. We aimed to develop mouse models of allergic diseases in the lung and skin with inducible and tissue-specific expression of IL-22, using a tetracycline (Tet)-controlled system. In this chapter, we describe a series of protocols we have developed to generate a construct that contains the TRE-Tight promoter and mouse IL-22 cDNA based on this system. Furthermore, we describe how to generate TRE-Tight-IL-22 mice through pronuclear microinjection. In our approach, two Tet-on (CC10-rtTA or SPC-rtTA) and a Tet-off (K5-tTA) transgenic mouse lines are selected to crossbreed with TRE-Tight-IL-22 mice to generate inducible tissue-specific transgenic lines. The transgenic strains, CC10-rtTA/TRE-Tight-IL-22 (CC10-rtTA-IL-22) or SPC-rtTA/TRE-Tight-IL-22 (SPC-rtTA-IL-22) mice, do not produce detectable levels of IL-22 in their bronchoalveolar lavage (BAL) samples in the absence of doxycycline (Dox). However, oral Dox treatment of these mice induces IL-22 expression in the BAL, and the airway and lung epithelial cells. For K5-tTA/TRE-Tight-IL-22 (K5-tTA–IL-22) mice, to avoid potential IL-22 toxicity to mouse embryos, Dox is given starting at the time of breeding to suppress tTA and to keep the IL-22 transgene off until the K5-tTA–IL-22 mice are 6 weeks old. Experiments are then initiated by withdrawing Dox from the drinking water. In all cases, IL-22 protein can be detected by immunohistochemistry in the skin of Tg(+) animals, but not in the skin of Tg(−) animals. Utilizing transgenic technology based on the Tetracycline-controlled system, we have established inducible transgenic mouse models in which cytokine IL-22 can be expressed specifically in the lung or skin. These models are valuable for studies in vivo in a broad range of diseases involving IL-22 and will provide a new platform for research and for seeking novel therapeutics in the fields of inflammation, asthma, and allergic dermatitis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mjosberg J, Spits H (2012) Type 2 innate lymphoid cells-new members of the “type 2 franchise” that mediate allergic airway inflammation. Eur J Immunol 42(5):1093–1096. https://doi.org/10.1002/eji.201242549

    Article  CAS  PubMed  Google Scholar 

  2. Scanlon ST, McKenzie AN (2012) Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol 24(6):707–712. https://doi.org/10.1016/j.coi.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  3. Souwer Y, Szegedi K, Kapsenberg ML, de Jong EC (2010) IL-17 and IL-22 in atopic allergic disease. Curr Opin Immunol 22(6):821–826. https://doi.org/10.1016/j.coi.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  4. Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR, O’Shea JJ (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206(1):35–41. https://doi.org/10.1084/jem.20072713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Witte E, Witte K, Warszawska K, Sabat R, Wolk K (2010) Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev 21(5):365–379. https://doi.org/10.1016/j.cytogfr.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  6. Zenewicz LA, Flavell RA (2011) Recent advances in IL-22 biology. Int Immunol 23(3):159–163. https://doi.org/10.1093/intimm/dxr001

    Article  CAS  PubMed  Google Scholar 

  7. Simonian PL, Wehrmann F, Roark CL, Born WK, O’Brien RL, Fontenot AP (2010) γδT cells protect against lung fibrosis via IL-22. J Exp Med 207(10):2239–2253. https://doi.org/10.1084/jem.20100061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonneville M, O’Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10(7):467–478. https://doi.org/10.1038/nri2781

    Article  CAS  PubMed  Google Scholar 

  9. Goto M, Murakawa M, Kadoshima-Yamaoka K, Tanaka Y, Nagahira K, Fukuda Y, Nishimura T (2009) Murine NKT cells produce Th17 cytokine interleukin-22. Cell Immunol 254(2):81–84. https://doi.org/10.1016/j.cellimm.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  10. Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T, Ramon M, Bergman R, Krueger JG, Guttman-Yassky E (2009) IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol 123(6):1244–1252.e1242. https://doi.org/10.1016/j.jaci.2009.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao Y, Yang J, Gao YD, Guo W (2010) Th17 immunity in patients with allergic asthma. Int Arch Allergy Immunol 151(4):297–307. https://doi.org/10.1159/000250438

    Article  CAS  PubMed  Google Scholar 

  12. Besnard AG, Sabat R, Dumoutier L, Renauld JC, Willart M, Lambrecht B, Teixeira MM, Charron S, Fick L, Erard F, Warszawska K, Wolk K, Quesniaux V, Ryffel B, Togbe D (2011) Dual role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am J Respir Crit Care Med 183(9):1153–1163. https://doi.org/10.1164/rccm.201008-1383OC

    Article  CAS  PubMed  Google Scholar 

  13. Taube C, Tertilt C, Gyulveszi G, Dehzad N, Kreymborg K, Schneeweiss K, Michel E, Reuter S, Renauld JC, Arnold-Schild D, Schild H, Buhl R, Becher B (2011) IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease. PLoS One 6(7):e21799. https://doi.org/10.1371/journal.pone.0021799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakagome K, Imamura M, Kawahata K, Harada H, Okunishi K, Matsumoto T, Sasaki O, Tanaka R, Kano MR, Chang H, Hanawa H, Miyazaki J, Yamamoto K, Dohi M (2011) High expression of IL-22 suppresses antigen-induced immune responses and eosinophilic airway inflammation via an IL-10-associated mechanism. J Immunol 187(10):5077–5089. https://doi.org/10.4049/jimmunol.1001560

    Article  CAS  PubMed  Google Scholar 

  15. Czarnowicki T, Krueger JG, Guttman-Yassky E (2014) Skin barrier and immune dysregulation in atopic dermatitis: an evolving story with important clinical implications. J Allergy Clin Immunol Pract 2(4):371–379, quiz 380-371. https://doi.org/10.1016/j.jaip.2014.03.006

    Article  PubMed  Google Scholar 

  16. Leung DY, Guttman-Yassky E (2014) Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol 134(4):769–779. https://doi.org/10.1016/j.jaci.2014.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guttman-Yassky E, Nograles KE, Krueger JG (2011) Contrasting pathogenesis of atopic dermatitis and psoriasis—part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol 127(6):1420–1432. https://doi.org/10.1016/j.jaci.2011.01.054

    Article  CAS  PubMed  Google Scholar 

  18. Brandt EB, Sivaprasad U (2011) Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2(3). https://doi.org/10.4172/2155-9899.1000110

  19. Szegedi K, Kremer AE, Kezic S, Teunissen MB, Bos JD, Luiten RM, Res PC, Middelkamp-Hup MA (2012) Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin. Exp Dermatol 21(6):431–436. https://doi.org/10.1111/j.1600-0625.2012.01487.x

    Article  CAS  PubMed  Google Scholar 

  20. Teraki Y, Sakurai A, Izaki S (2013) IL-13/IL-22-coproducing T cells, a novel subset, are increased in atopic dermatitis. J Allergy Clin Immunol 132(4):971–974. https://doi.org/10.1016/j.jaci.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  21. Hijnen D, Knol EF, Gent YY, Giovannone B, Beijn SJ, Kupper TS, Bruijnzeel-Koomen CA, Clark RA (2013) CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-gamma, IL-13, IL-17, and IL-22. J Invest Dermatol 133(4):973–979. https://doi.org/10.1038/jid.2012.456

    Article  CAS  PubMed  Google Scholar 

  22. Schonig K, Freundlieb S, Gossen M (2013) Tet-transgenic rodents: a comprehensive, up-to date database. Transgenic Res 22(2):251–254. https://doi.org/10.1007/s11248-012-9660-9

    Article  CAS  PubMed  Google Scholar 

  23. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89(12):5547–5551. https://doi.org/10.1073/pnas.89.12.5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769. https://doi.org/10.1126/science.7792603

    Article  CAS  PubMed  Google Scholar 

  25. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A 97(14):7963–7968. https://doi.org/10.1073/pnas.130192197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loew R, Heinz N, Hampf M, Bujard H, Gossen M (2010) Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 10:81. https://doi.org/10.1186/1472-6750-10-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diamond I, Owolabi T, Marco M, Lam C, Glick A (2000) Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J Invest Dermatol 115(5):788–794. https://doi.org/10.1046/j.1523-1747.2000.00144.x

    Article  CAS  PubMed  Google Scholar 

  28. Zhu Z, Ma B, Homer RJ, Zheng T, Elias JA (2001) Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 276(27):25222–25229. https://doi.org/10.1074/jbc.M101512200

    Article  CAS  PubMed  Google Scholar 

  29. Fang P, Zhou L, Zhou Y, Kolls JK, Zheng T, Zhu Z (2014) Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation. PLoS One 9(9):e107454. https://doi.org/10.1371/journal.pone.0107454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng T, Oh MH, Oh SY, Schroeder JT, Glick AB, Zhu Z (2009) Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol 129(3):742–751. https://doi.org/10.1038/jid.2008.295

    Article  CAS  PubMed  Google Scholar 

  31. Lou H, Lu J, Choi EB, Oh MH, Jeong M, Barmettler S, Zhu Z, Zheng T (2017) Expression of IL-22 in the skin causes Th2-biased immunity, epidermal barrier dysfunction, and pruritus via stimulating epithelial Th2 cytokines and the GRP pathway. J Immunol 198(7):2543–2555. https://doi.org/10.4049/jimmunol.1600126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou L, Yuan BJ, Zhou YQ, Dong JJ, Fang P, Zheng T, Zhu Z (2015) Establishment of a transgenic mouse model with lung-specific expression of IL-22 using the Tet-on inducible system. J Wuhan Univ 3:203–207

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AI55064, AAAAI Women’s Award, and AAAAI Faculty K to R Award to T.Z., NIH grant HL079349 to Z.Z., and NSFC grant 81301428 to L.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, L., Zheng, T., Zhu, Z. (2021). Generation and Characterization of Inducible Lung and Skin-Specific IL-22 Transgenic Mice. In: Nagamoto-Combs, K. (eds) Animal Models of Allergic Disease. Methods in Molecular Biology, vol 2223. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1001-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1001-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1000-8

  • Online ISBN: 978-1-0716-1001-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics