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Abstract

Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury
of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we
describe test interventions that are used to study the control of renal hemodynamics and oxygenation in
experimental animals in the context of kidney-specific control of hemodynamics and oxygenation. The
rationale behind the use of the individual tests, the physiological responses of renal hemodynamics and
oxygenation, the use in preclinical studies, and the possible application in humans are discussed.
This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network

funded by the European Cooperation in Science and Technology (COST) program of the European
Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
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1 Introduction

Kidney diseases are a global health burden with steadily increasing
incidence and prevalence [1–5]. Animal studies indicate that acute
kidney injuries (AKI) of various origins share one common link in
the pathophysiological chain of events, ultimately leading to AKI,
as well as to progression from AKI to chronic kidney diseases
(CKD): imbalance between renal oxygen delivery and oxygen
demand [6–14]. Renal tissue hypoperfusion and hypoxia have
also been suggested to play a pivotal role in the pathophysiology
of other kidney diseases including diabetic kidney disease [15–
19]. These pathophysiological concepts have largely been gener-
ated by preclinical studies that used either invasive quantitative
probes or noninvasive functional magnetic resonance imaging
(MRI) techniques to gain insight into renal hemodynamics and
oxygenation. Thus, making ultimate statements on the role of
renal hypoperfusion and hypoxia for these renal disorders is elusive
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because in vivo assessment of renal hemodynamics and oxygenation
constitutes a challenge.

All modalities available in today’s experimental and transla-
tional research practice have inherent shortcomings and methodo-
logical constraints. Invasiveness is the major disadvantage of the
gold standard physiological probes such as perivascular flow probes
for measurement of total renal blood flow, laser-Doppler-optodes
for assessment of local tissue perfusion, and Clark-type electrodes
or fluorescence-quenching optodes for measurements of local tis-
sue partial pressure of oxygen (pO2), which precludes their use in
humans. While functional MRI including blood oxygenation-
sensitized T2* (aka blood oxygenation level-dependent MRI;
BOLD-MRI) offers noninvasive techniques to obtain insight into
renal perfusion and oxygenation, its major weakness is its qualita-
tive nature. Before it can be used for quantitative characterization
of renal tissue perfusion and oxygenation, it needs to be calibrated
with the gold standard invasive techniques in various (patho)-
physiological scenarios [20–24].

The control of renal hemodynamics and oxygenation under
physiological as well as under pathophysiological conditions is
complex and differs considerably from nonrenal tissue [8, 21, 23,
25–27]. Due to the considerable capacity of the organism’s homeo-
static control systems to—at least partially—compensate for distur-
bances of, or injury to, certain control elements, these alterations
are often not easily detectable when studied by measuring baseline
data only. In order to disentangle these complexities, dedicated
reversible test interventions are conceptually appealing. In fact,
such interventions can serve three main purposes. First, they are
used to gain more insight into the control of renal hemodynamics
and oxygenation in healthy animals and in animal models of various
kidney diseases [8, 12, 25, 28–37]. Second, the tests are used to
assess whether a given drug or contrast agent has beneficial or
unwarranted effects on the control of renal hemodynamics and
oxygenation [38–40]. Finally, dedicated reversible tests are used
to achieve calibration of functional MRI data [22, 23].

In this chapter, specifics of the control of renal hemodynamics
and oxygenation are outlined first. Then, the individual test proce-
dures are described, and the rationale behind their use, the physio-
logical response of renal hemodynamics and oxygenation, the use in
preclinical studies and the possible application in humans are
discussed.

This chapter is part of the book Pohlmann A, Niendorf T (eds)
(2020) Preclinical MRI of the Kidney—Methods and Protocols.
Springer, New York.

58 Kathleen Cantow et al.



2 Specifics of Renal Hemodynamics and Oxygenation

Renal hemodynamics and oxygenation offer a number of striking
differences when compared to nonrenal tissue. First, total renal
blood flow (RBF) is huge when compared to virtually all other
organs on a per gram basis: the kidneys receive about 20% of the
cardiac output under resting conditions. Yet the distribution of
blood perfusion differs substantially between the layers: while
100% of blood flowing into the kidney reaches the cortex, only
15% of blood that previously passes through the cortex, will reach
the medulla. Even intralayer (cortex, outer medulla, and inner
medulla) perfusion is quite heterogeneous [8, 41, 42]. In accor-
dance with the high total RBF, the kidneys’ oxygen extraction (the
difference between the O2 content in the renal arterial and the renal
venous blood) is low as compared to the majority of nonrenal
tissues. Yet the partial pressure of oxygen (pO2) is low in the
medulla and also varies considerably within the respective layers,
in accordance with the different blood flow distribution [21, 23,
26, 43–47].

Second, the kidney differs from all other organs with regard to
the relationship between metabolism and perfusion. More than
26 thousand millimoles of sodium (Na+) are filtered in the human
glomeruli every day, equivalent to more than 1.5 kg of table salt. To
achieve sodium balance, the amount of salt excreted by the kidneys
must exactly match the amount of ingested salt minus the amount
of extrarenal loss. Thus, more than 99% of the filtered sodium must
usually be reabsorbed from the tubules. Tubular resorption relies
on active transport processes, which account for about 85% of the
kidney’s energy expenditure and therefore its O2 consumption.
The more sodium is filtered in the glomeruli, the more must be
reabsorbed. As glomerular filtration rate (GFR), under the majority
of circumstances, increases with increasing RBF, renal O2 con-
sumption also usually increases with increasing renal perfusion.
This is in contradistinction to all other organs, where metabolism
determines perfusion [8, 48].

Third, hormones such as angiotensin II and epinephrine, sym-
pathetic vasomotor nerves, and paracrine mediators such as nitric
oxide or adenosine, that control resistance vessels in nonrenal
tissues, impinge on intrarenal resistance vessels too, thereby alter-
ing renal O2 delivery. However, in the kidney, they additionally
affect tubular sodium resorption and thus O2 consumption. Fur-
thermore, their effect on postglomerular vessels can result in diver-
gent responses of RBF and GFR. Finally, adenosine exerts
vasodilation in virtually all nonrenal vascular beds, but vasoconstric-
tion in the renal cortex [8, 25, 48, 49].

Fourth, the kidney is equipped with efficient mechanisms of
autoregulation, that is, the ability to dampen or even to abolish the
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effects that changes in renal arterial pressure would otherwise
inevitably have on RBF and GFR. The almost perfect autoregula-
tion of RBF and GFR probably relies on the fact that not just one,
but three mechanisms are involved. The first one, the myogenic
response (aka Bayliss effect) acts not only on renal resistance vessels
but also on brain and gut vessels. The second mechanism, the
tubuloglomerular feedback (TGF), and the third one, hitherto
just named “third mechanism”, are kidney-specific. Renal autore-
gulatory mechanisms, in particular the TGF and the third mecha-
nism, have been suggested to serve the purpose of balancing O2

delivery, that is, RBF with metabolic and O2 demands arising from
tubular reabsorption. The outer medulla is particularly prone to
imbalance between O2 delivery and demand since this layer exhibits
a high O2 demand but low pO2 [21, 34, 35, 50–52].

Fifth, intrarenal perfusion is also affected by changes in tubular
volume. The tubular volume fraction is quite large and can rapidly
change due to alterations in GFR, in tubular outflow toward the
pelvis, in tubular fluid resorption, and modulation of the trans-
mural pressure gradient. Since the renal capsule is rather tough,
changes in tubular volume will result in circular distension or
compression of intrarenal vessels [23, 36].

Finally, in addition to the heterogeneous intrarenal blood per-
fusion, three other factors substantially contribute to the low tissue
pO2 and, in particular, to the “physiological hypoxia” in the
medulla. First, there is a considerable shunt diffusion of O2 from
arteries to veins in the cortex and from descending to ascending
vasa recta in the medulla [53–55]. Second, the Fåhræus–Lindqvist
effect lowers the hematocrit in the vasa recta supplying the medulla,
which lowers the O2 content of blood perfusing parts of the
medulla [41, 42]. Third, plasma skimming at intrarenal vessel
branches results in different hematocrit and therefore O2 content
of blood perfusing the daughter vessels [41, 56].

3 Dedicated Reversible Test Interventions

3.1 Short Periods

of Occlusion

of the Renal Artery or

Renal Vein

Occlusions of the renal artery (alternatively: the suprarenal aorta)
or of the renal vein emulate clinical conditions in which deficient
renal perfusion results in deterioration of intrarenal oxygenation. If
maintained for longer periods of time these conditions can cause
AKI [57–59]. The rationale for performing both of these tests is
that renal arterial occlusion and renal venous occlusion have similar
effects with regard to renal perfusion and oxygenation, yet oppos-
ing effects with regard to intrarenal blood volume. With the onset
of aortic occlusion, the inflow of blood into the kidney is abruptly
stopped while outflow via the renal vein continues until pressures in
intrarenal vessels and in the vena cava are equalized. With the onset
of renal venous occlusion, outflow of blood is abruptly stopped
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while inflow via the artery does not cease until the arterial pressure-
induced distension of intrarenal vessels is counterbalanced by the
resistance of the renal tissue including the rather tough capsule
[22, 39, 60].

In both cases, renal tissue perfusion rapidly decreases and even-
tually approaches zero flow. As renal O2 consumption remains
unaltered at the early stage of occlusions, a rapid and massive
decline in renal tissue pO2 results, which, in turn, also reduces
blood pO2 and the O2 saturation of hemoglobin (StO2) in the
intrarenal (micro)vasculature. This intrarenal deoxygenation of
hemoglobin (Hb) is aggravated by a progressive rightward shift of
the oxyHb dissociation curve during the occlusion due to the
intrarenal accumulation of carbon dioxide (CO2) [22, 39, 60].

Yet the opposing changes of renal blood volume have an impact
on renal tissue oxygenation. The decrease in tissue pO2 at the onset
of the venous occlusion is much slower than at the onset of the
arterial occlusion. While renal O2 consumption is similar during
both kinds of occlusions, the transiently maintained inflow of oxy-
genated blood at the onset of venous occlusion increases the intrar-
enal reservoir of O2 [22, 39, 60].

The opposing changes in renal blood volume have a massive
impact on the changes in blood oxygenation-sensitized T2* (and its
reciprocal value, R2*), because T2* reflects the amount of deoxy-
genated Hb (deoxyHb) per tissue volume (voxel) [23]. In case of
the venous occlusion with its increase in the vascular volume frac-
tion and thus the increasing amount of deoxyHb per volume, tissue
T2* massively decreases [60]. With the arterial occlusion’s decrease
of deoxyHb per volume, the decrease in T2* is small. In fact, it was
found significantly smaller than the decrease in T2* measured
during hypoxemia (8% inspiratory oxygen fraction), which is dia-
metrically opposed to the effects of arterial occlusion versus hypox-
emia on tissue pO2 (see Fig. 1) [22, 23, 36].

Short-time (1–3 min) occlusions of the renal artery (or of the
suprarenal aorta) have been used in several studies for different
scientific purposes. In order to gauge the effects on T2* and T2 of
bolus injections of an X-ray contrast medium into the thoracic aorta
of healthy rats, the effect of arterial occlusion (and that of hypox-
emia) was quantified in the same rats [36]. En route to calibration
of T2* with quantitative physiological measurements by means of a
dedicated hybrid MR-PHYSIOL setup (see the chapter by Cantow
K et al. “Monitoring Renal Hemodynamics and Oxygenation by
Invasive Probes: Experimental Protocol”), suprarenal aortic occlu-
sion was used [22]. In order to ascertain that the superparamag-
netic iron oxide nanoparticle (USPIO) preparation, ferumoxytol is
suitable as a contrast medium for MR-based assessment of the renal
blood volume fraction; its possible unwarranted effects on control
of renal hemodynamics and oxygenation were tested by interven-
tions including suprarenal aortic occlusion in rats (see Fig. 2)
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[38]. Implementing a setup that combines classical invasive probes
for RBF, tissue perfusion, and pO2 with newly developed near
infrared spectroscopy (NIRS) techniques that enable monitoring
of the amount of Hb per tissue volume and the O2 saturation of Hb
(StO2) of intrarenal blood (termed PHYSIOL-NIRS), aortic occlu-
sion was used as one of the test interventions [39]. By means of a
dedicated deconvolution procedure developed by our group, the
time course of RBF upon the release of the occlusion can be
analyzed. This “step-response” analysis allows us to determine the
strength of each of the three mechanisms of RBF autoregulation in
the whole kidney in vivo, in both healthy rats and rat models of AKI
[30, 34, 35].

Short-time (1–3 min) occlusions of the renal vein were also
used for different purposes. In order to establish an optimum dose
of the USPIO ferumoxytol in rats for the purpose of T2*-based
quantification of the renal blood volume fraction in a 9.4T small
animal scanner, renal venous occlusion was chosen as the combined
effects of the decrease in O2 delivery and the increase in the blood
volume fraction; thus, deoxyHb per volume was expected to result
in a most prominent decrease in T2* (see Fig. 3) [60].

Both renal arterial occlusion and renal venous occlusion was
performed in the same healthy rats in the PHYSIOL-NIRS setup in
order to directly compare their effects [39].

As the implementation of vascular occluders necessitates invasive
techniques, these tests can be performed in preclinical studies only.
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Fig. 1 Comparison of relative changes in renal cortical and medullary tissue pO2 quantified by invasive gold
standard fluorescence quenching optodes (left panel) versus relative changes in renal cortical and medullary
T2* (so-called BOLD-MRI, right panel), during short-term occlusion of the suprarenal aorta and short-term
hypoxia (8% inspiratory O2 fraction), respectively, in anesthetized rats. Data are mean � SEM, redrawn from
Refs. 22, 36
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Fig. 2 In order to study whether the USPIO preparation, ferumoxytol (FO), exerts unwarranted effects on
regulation of renal hemodynamics and oxygenation, a short-term suprarenal aortic occlusion was employed as
test intervention in anesthetized rats [38]. Here, the relative changes (mean � SEM) in hemodynamics and
tissue oxygenation are depicted with FO dosages of 6, 10, and 41 mg Fe/kg body mass, or vehicle (Control)
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3.2 Servocontrolled

Changes in Renal

Arterial Pressure

Dynamic changes in renal arterial pressure according to different
time courses of pressure reduction followed by pressure restora-
tion—be it staircasewise or rampwise changes—enable insights into
control of renal hemodynamics and oxygenation including the
degree of autoregulation’s efficiency and the contributions of the
three autoregulatory mechanisms in vivo. This is achieved by a
servocontrol system developed by our group, that was utilized to
help disentangle the complexities of renal physiology and patho-
physiology [30, 31, 33, 34]. Moreover, a study that employed such
an intervention in a rat model that emulates an early stage of
diabetic kidney disease (a type 1 diabetes mellitus–like model
induced by administration of streptozotocin 4 weeks before obtain-
ing the data on renal perfusion and oxygenation) unmasked altera-
tions in the control of renal perfusion and oxygenation that would
have gone undetected when only baseline data had been obtained
[32]. Data on medullary tissue pO2 obtained by invasive probes in
this model have been inconsistent, which, among other reasons,
may be caused by the spatial heterogeneity of pO2 within the renal
medulla [15–17]. A recent study did not find any significant differ-
ences in baseline data on RBF and cortical andmedullary tissue pO2

among healthy control rats, diabetic rats, and diabetic rats treated
with the antidiabetic liraglutide (a glucagon-like peptide 1 agonist
approved for patients suffering from type 2 diabetes). However, as
depicted by Fig. 4, the response to ramp-wise reduction and resto-
ration of renal arterial pressure differed considerably among these
groups [32].

Again, as the implementation of a vascular occluder necessitates
invasive techniques, such studies can be performed in preclinical
studies only.

3.3 Short Periods

of Changes

in the Inspiratory Gas

Mixture

Hyperoxia, hypoxia, and hypercapnia primarily alter blood oxyge-
nation. Renal O2 delivery is determined by renal perfusion and by
the arterial O2 content. The latter is determined, among other
factors, by the inspiratory fraction of oxygen (FiO2), and, due to
the effect of CO2 on the oxyHb dissociation curve, also by the
inspiratory fraction of CO2 (FiCO2).

Increasing the FiO2 from 21% (normoxia) to 100% (hyperoxia)
results in a substantial increase in arterial pO2 (usually four- to
fivefold), whereas the increase in arterial O2 content is very small,
because most of the Hb in arterial blood is already O2 saturated
under normoxic conditions. Yet the increase in arterial pO2

enhances the driving force for diffusion of O2 from intrarenal
vessels to tissue as well as from intrarenal arteries to veins. As a
consequence, the increase in renal tissue pO2 is substantial,
whereby medullary pO2 increases less than cortical pO2, due to
arteriovenous diffusive O2 shunting, which reduces the O2 content
of arterial blood that perfuses the medulla [22, 26, 39, 53–
55]. Renal T2* changes exerted by hyperoxia are small
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[22]. While the amount of deoxyHb in arterial blood is barely
changed, the increase in blood pO2 in intrarenal veins that results
from the higher arteriovenous pO2 difference decreases venous
deoxyHb. While primarily altering blood oxygenation, the hyper-
oxic stimulus has also secondary effects: it results in vasoconstric-
tion, preferentially in nonrenal vascular beds, which leads to an
increase in arterial pressure [22, 31, 39].

The primary effect of reducing the FiO2 (typically to either 8%
or 10%, with durations of 3–12 min, in rat studies) is a decrease in
oxygenation of arterial blood (hypoxemia) with the consequent
reduction in renal O2 supply. With ongoing O2 consumption, this
does per se result in a decrease in renal tissue pO2. Yet renal O2

supply is further diminished by hypoxia-induced extrarenal vasodi-
lation that results in a drop in arterial pressure with ensuing
decrease in RBF [22, 31, 39, 59]. Whether this is aggravated of
alleviated by constriction or dilation, respectively, of the renal vas-
culature depends on the degree of hypoxia: in anesthetized rats,
FiO2 of 8% results in renal vasoconstriction while 10% results in
vasodilation [22, 31, 39]. The combined effect of hypoxemia and
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Fig. 4 Changes of invasively measured parameters of renal hemodynamics and oxygenation during ramp-wise
reduction in renal perfusion pressure followed by ramp-wise pressure restoration in anesthetized rats.
Conductance values (the reciprocal of vascular resistance) were calculated by dividing the respective
perfusion values by renal perfusion pressure, in order to distinguish flow changes that result from passive
circular distension/compression of vessels from those actively exerted by vascular smooth muscles. Three
groups were studied: a healthy control group, a group in which a diabetes mellitus type 1-like disorder
(DM) was induced by streptozotocin 4 weeks before obtaining the data, and a third group in which DM was
induced and the antidiabetic liraglutide administered for 3 weeks (DM + LIRA). Values (mean� SEM) are given
as relative changes from baseline [32]
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reduced RBF on renal O2 supply leads to a major mismatch with O2

consumption, that massively reduces tissue pO2 as well as T2* (see
Fig. 1) [22, 39]. A further secondary effect of arterial hypoxemia is
increased ventilation triggered by arterial chemoreceptors. The
ensuing decrease in arterial pCO2 shifts the oxyHb dissociation
curve to the left, that is, O2 is hindered from being released by
Hb, which further aggravates the tissue hypoxia [61, 62].

With the hypercapnic stimulus (increasing FiCO2 to 5%) the
opposite effect is achieved, namely a rightward shift of the oxyHb
dissociation curve. This would per se result in a decrease in StO2

and an increase in blood and tissue pO2. However, while the
increase in tissue pO2 is substantial, the StO2 decrease is meagre
[39]. The major reason that StO2 does not decrease much is that
increased pCO2 of arterial blood is a very strong stimulus for
ventilation, again mediated by arterial chemoreceptors [61, 62].

Hyperoxic, hypoxic, and hypercapnic tests have been used in a
multitude of preclinical in vivo studies. With regard to the kidney
this includes but is not limited to studies on the control of renal
hemodynamics and oxygenation in healthy animals and models of
kidney diseases [26, 27, 31, 53–55, 59], experiments that aimed at
calibration of T2* bymeans of theMR-PHYSIOL setup (see Fig. 5),
[22] studies on the T2* effect of an X-ray contrast medium, [36]
assessment of possible unwarranted effects of the USPIO ferumox-
ytol, [38] and experiments en route to the PHYSIOL-NIRS
setup [39].

Fig. 5 Time courses of selected invasively measured data and MR parameters acquired simultaneously
throughout baseline, a period of hypoxia (FiO2 ¼ 8%), and recovery in anesthetized rats by means of a
dedicated MR-PHYSIOL hybrid setup (for details see text). Data (mean � SEM) are relative changes from
baseline, redrawn from Ref. 22
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Given the broad therapeutic use of pure oxygen, short-term
tests with 100% FiO2 should pose no problem for studies in
humans, whereas hypoxic challenges are precluded in humans, for
obvious ethical reasons. Hypercapnia has been used for decades in
humans, in particular, for the study of cerebrovascular reactivity,
and should thus be employed in preclinical and clinical studies on
renal hemodynamics and oxygenation as well [63, 64].

3.4 Administration

of Drugs

and Endogenous

Vasoactive

Substances

Furosemide is the “classic” loop diuretic: its major action is the
inhibition of the sodium–potassium–two-chloride cotransporter in
the apical membrane of tubular epithelial cells of the thick ascend-
ing limb of Henle’s loop. The primary effect is an increase in urine
flow rate and in urinary sodium and potassium excretion. As less
tubular resorption necessitates less renal O2 consumption, admin-
istration of furosemide leads to an increase in renal tissue pO2

[65, 66]. In accordance, increases in renal T2* (or decreases in its
reciprocal value R2*) have been observed in a multitude of preclini-
cal as well as clinical studies (see Fig. 6) [37, 66–69]. It must be
noted, however, that the increase in T2* upon furosemide does not
solely rely on improved oxygenation. First, the increase in tubular
fluid downstream of the thick ascending limb will increase the
transmural pressure gradient, thereby compressing intrarenal

Fig. 6 Effect of injections of furosemide (5 mg/kg body mass), hydralazine (5 mg/kg), angiotensin II (0.5 μg/
min/kg), and saline (repeatability) on renal BOLD as recorded by means of a 1.5 T clinical MR scanner
(Magnetom Avanto, Siemens Healthcare), using a multiple gradient echo sequence (TR ¼ 300 ms, TE ¼ 5,
10, 20, 30, and 40 ms, voxel size 0.6 � 0.6 mm in-plane and 5 mm slice thickness) in rats in vivo. Data are
mean � SEM of median ROI values [37]
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vessels with the ensuing decrease in the amount of deoxyHb per
tissue volume. Second, furosemide inhibits the TGF, thereby
compromising renal autoregulation with the possible consequence
of an increase in RBF [34, 35, 50].

The use of the furosemide test in both preclinical and clinical
MR studies is nowadays as widespread that it is almost regarded as a
gold standard. However, whether it fulfils all expectations regard-
ing its use as a diagnostic tool in patients suffering from various
kidney diseases, remains to be seen [68].

Administration of furosemide is a reversible intervention inso-
far as its direct effects vanish with the excretion of the drug.
However, it leaves the organism with deficits in water, sodium,
and potassium. These should ideally be replenished—be it per os
or by means of infusions of a balanced electrolyte solution.

Bolus injections of adenosine cause a rapid drop in arterial
pressure due to its vasodilatory effect on nonrenal resistance vessels.
In the renal cortical vascular bed, it exerts vasoconstriction
[39, 49]. The consequence of these two effects is a substantial
decrease in RBF followed by a smaller decrease in cortical tissue
pO2. All these effects vanish rapidly, lasting less than a minute for
the hemodynamics and less than 2 min for the cortical pO2 in
rats [39].

Whereas the role of adenosine in various renal control mechan-
isms including the TGF as well as the potentially beneficial effect of
adenosine receptor antagonists for prevention of X-ray contrast
media-induced AKI have been intensively studied, [49, 70] the
adenosine test has seldom been used to study renal hemodynamics
and oxygenation. This may appear surprising, as injections of aden-
osine—be it intravenously or into coronary arteries—in patients
suffering from coronary disease is quite established
[71, 72]. While the risk for a decrease in renal cortical pO2 in
patients must not be ignored—even if it is lasting less than 2 min,
the test should at least find wider use in preclinical studies.
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