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Abstract

Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity
worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related
illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been
actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the
degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal
models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and
pitfalls, and thus assisting the researcher in experiment planning.
This publication is based upon work from the COST Action PARENCHIMA, a community-driven

network funded by the European Cooperation in Science and Technology (COST) program of the
European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
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1 Introduction

Renal diseases remain devastating illnesses with unacceptably high
rates of mortality and morbidity worldwide. The prevalence of end
stage kidney disease is currently between 8% and 16% and is rapidly
increasing; the number of patients increased tenfold in the last four
decades [1].

Kidney diseases generate a major drain on health and
productivity-related resources for healthcare systems; thus, preven-
tion and early treatment would have an enormous social and eco-
nomic impact.

Understanding the pathologic mechanisms of renal injury is
essential for finding new targets for intervention and developing
effective treatments for patients with kidney disease [2]. Landmark
publications have outlined key areas in which progress is necessary,
specifically highlighting the need for superior diagnostic tools [3].

At present, diagnosis of kidney disease is difficult and often
involves invasive procedures such as biopsy. Conventional markers
of renal function such as serum creatinine and blood urea nitrogen
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are poorly sensitive and poorly selective. The levels of these bio-
markers can take several hours or days to reach a new steady state
and thus represent a delayed indication of functional change that
lags behind structural deterioration during the early stage of acute
kidney injury (AKI). In addition, the imbalance between oxygen
supply and demand in kidney tissue is the initiating step in the
pathophysiology of renal ischemia–reperfusion injury (IRI), and a
pivotal early element in the pathophysiology of AKI of other ori-
gins. Currently kidney biopsy is the only available method to assess
renal microstructure, but it has several disadvantages, including its
invasive nature and susceptibility to sampling bias. Thus, noninva-
sive, in vivo imaging methods such as MRI are indispensable for the
adequate assessment of kidney function, oxygenation, and struc-
ture in both preclinical and clinical setups. Importantly, several
novel techniques are available to generate MRI data by measuring
tissue properties linked to filtration, tissue oxygenation, perfusion,
fibrosis, inflammation, or tissue edema that can be used as biomar-
kers of renal disease [4]. MRI affords full kidney coverage, soft
tissue contrast that helps to differentiate the renal layers, second-to-
minute temporal resolution, support of longitudinal studies, and
high anatomical detail without the use of ionizing radiation [5, 6].

Drug discovery is a time-consuming, expensive, and high-risk
process. In order to develop one FDA approved drug in the pre-
clinical phase thousands of compounds have to be tested from
which only dozens end up in clinical trials [7]. Conducting studies
on animal models is a valuable strategy in the preparation for clinical
trials because of the high similarity between some animals and
humans in their genetics, physiology, diseases, and diagnostic
tools. Without doubt the translatability of results obtained in ani-
mal models to humans has numerous limitations, but often they
represent an indispensable approach for trying to predict the effects
of a drug in the complex human system, and also for deciding on an
appropriate dose regime for the clinical trial(s) that balances efficacy
and safety. Many mechanistic questions can be answered only
through invasive procedures or extreme exposures possible only in
animals. Moreover, due to the fact that decades may elapse between
the onset and clinical manifestations of renal diseases in humans
(e.g., diabetic kidney disease), rodent models offer a more feasible
means of experimentation because the timeline of pathogeneses are
typically much shorter (either naturally or due to tailored disease
induction).

An ideal disease model accurately mimics the human condition
genetically, experimentally and/or physiologically, but unfortu-
nately such models do not exist. One reason for the poor outcomes
in clinical trials is that most animal models do not fully recapitulate
the pathological mechanisms underlying human diseases. Human
diseases are very complex, but specific factors of a disease are
relatively easy to model, which is an advantage and disadvantage
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at the same time. All of the widely used animal models have their
particular limitations; therefore, the model used should be appro-
priate for the question being addressed [8].

The present chapter summarizes animal models of renal dis-
eases highlighting MRI-specific considerations, advantages, and
pitfalls with an aim to assist the researcher in planning an experi-
ment and choosing the best species/strain/model to address the
question being asked.

This chapter is part of the book Pohlmann A, Niendorf T (eds)
(2020) Preclinical MRI of the Kidney—Methods and Protocols.
Springer, New York.

2 Ethical Issues

A wide range of positions exist on the debate over the ethics of
animal experiments. On one end of the spectrum people argue that
an animal should have as much right to live out a full life, free of
suffering as a human and thus all animal experimentation should
end. Others argue that while the unnecessary abuse of animals is
clearly wrong, animal experimentation must continue because of
the enormous scientific resource that animal models provide. A
detailed discussion of the growing scholarly literature in animal
research ethics is beyond the scope of this chapter; however, the
authors feel obliged to provide some fundamental guidelines for
conduct of ethical research. The authors of this chapter believe that
biomedical animal research is founded on a pivotal ethical principle:
“It is among the most noble and indeed imperative of human endea-
vors to employ scientific research to prevent, alleviate, and cure the
pain, suffering, distress, fear, anxiety, disability, infirmity and death
associated with human disease” [9]. Because the use of animal
models to understand human disease is motivated by such a high
ethical ideal, we must aim to adhere to the highest ethical standards
when conducting research.

When designing a study applying the principles of 3Rs: replace-
ment, reduction, and refinement is advised to provide a framework
for performing the most humane animal research possible.Replace-
ment means the substitution of animals with alternative techniques
or avoid the use of animals altogether. Alternative methods such as
cell cultures or novel approaches such as stem cell technologies,
tissue engineering, or modeling using artificial intelligence show
promise for replacing animals in many areas of research but often
give limited information about what happens in the whole living
animal. Reduction means to obtain information of given amount
and precision from fewer animals or more information from the
same number of animals. Proper experimental design and statistical
analysis of the proposed project is pivotal in using the optimal
number of animals. If more animals are used than is necessary for
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obtaining reliable results, then animal lives are wasted. On the other
hand, if too few animals are used then the results can be unreliable
and the experiment has to be repeated, using more animals in total.
Refinement means minimizing the incidence or severity of proce-
dures that result in distress or suffering of animals which still have
to be used. Refinement can also improve the quality of research by
reducing stress in animals. By law, any suffering or pain to an animal
must be minimized. Animals must be anaesthetized for surgery,
and, if necessary, analgesics must be administered afterward, which
will be discussed in detail in the chapter by Kaucsar T et al.
“Preparation and Monitoring of Small Animals in Renal MRI.”

3 General Guidelines for Choosing an Animal Model

3.1 Rat or Mouse? The first major decision when designing a study using an animal
model is to choose the most suitable species. Rodent models are the
most popular to resemble human disease for a number of reasons:
90% of genes are orthologous in the rat, murine, and human
genomes, small size and fast reproduction of rodents facilitates
high-throughput studies, and a very good genetic/molecular tool
box is available.

Differences within rodents must not be underestimated when
designing experiments. Inbred mouse strains are more stable,
uniform, repeatable, and better defined than outbred rat strains
such as Wistar or Sprague-Dawley where the exact genetic back-
ground of each animal is unknown [10].

While rats used to be the preferred rodent in kidney research,
this changed with the advent of murine transgenic and knockout
technologies in the past decades. Genetically modified mice provide
unique opportunities for targeted research of the impact of indi-
vidual proteins on phenotype and responsiveness to therapeutic
interventions. Gene deletion or overexpression generally results in
very predictable and precise phenotypes in mice. Furthermore, due
to their small size many more mice can be housed in a small space
than rats and are therefore cheaper to maintain; they have a short
reproductive cycle and accelerated life span.

Murine models of kidney disease do have some limitations and
disadvantages that are worth considering. Surgical procedures such
as ureteric obstruction, renal ischemia, or kidney transplantation
are widely used to model human disease. Surgical manipulations
and micropuncture studies are technically much easier to perform
in larger animals such as rats.

Moreover, the pathophysiology in rat models is often not repli-
cated in mice. For example, while humans and rats have only one
copy of the renin gene, mice either have a single gene or two copies
at the renin locus. This may be an important confounding variable
considering the central role of the renin–angiotensin–aldosterone
system in renal disease and that the plasma renin activity of mice
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with two renin genes is tenfold higher than their single-gene
counterparts [11].

Hypertension is a leading cause of kidney failure; thus, nonin-
vasive blood pressure measurements are a crucial component of
studies in the field. While the technique is fairly routine in rats, it
has been proven to be rather challenging in mice [12].

Finally, the smaller size of mice means smaller amounts of
experimental material to work with. The fundamental limitation
in MRI is signal-to-noise ratio, which is in direct correlation with
the volume of the subject. Acquiring high-resolution images of
relatively small mouse kidneys could be challenging using lower
field strength MRI machines. Furthermore, concurrent measure-
ment of multiple variables such as RNA expression, protein levels,
histology, and metabolic processes from individual animals can be
challenging.

3.2 Which Strain? The choice of the right strain is essential since disease phenotypes in
rodents are strongly influenced by species and strain. For example,
there are distinct differences in the susceptibility to ischemic AKI
among various mouse strains or even different colonies of the same
strain. 129/Sv and National Institute of Health Swiss mice have
been shown to be less sensitive to ischemic injury than C57BL/6 or
BALB/c mice [13, 14]. Most transgenic models are described to
have comparable genetic background with wild-type strains such as
C57BL/6 after at least five generations of backcross; however, the
wild-type mice from the same transgenic models may differ signifi-
cantly from ordinary C57BL/6 mice. Similarly, Brown-Norway
rats have been found to be almost completely protected against
several manifestations of IRI when compared with the commonly
used Sprague-Dawley rat model [15]. In conclusion, pilot experi-
ments always have to be performed to determine the appropriate
duration of ischemia for a new strain to be studied.

The C57BL/6 mouse strain is also relatively resistant to the
development of diabetic kidney disease (DKD). C57BL/6 mice
develop significantly less albuminuria and renal histopathological
changes than DBA/2J and KK/HIJ mice [16]. Sprague-Dawley
rats are far more sensitive to streptozotocin-induced diabetes than
nude rats [17].

The remnant kidney model or 5/6 nephrectomy model has
been used extensively in rats to study the pathogenesis of glomer-
ulosclerosis. In contrast, mouse strains such as C57BL/6 and
C57BLX Swiss-Webster mice do not develop significant glomeru-
losclerosis or increased systolic blood pressure and proteinuria in
this model. C57BL/6 mice and Wistar rats are less susceptible to
deoxycorticosterone acetate (DOCA) salt-induced hypertension
than 129/Sv mice or Sprague-Dawley rats respectively
[18, 19]. Thus, the more susceptible 129/Sv strain is
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recommended to study hypertension-associated glomerulosclerosis
in mice [20].

3.3 Sex The anatomical structure of the healthy kidney is different in the
two sexes. Females have more glomeruli in the kidneys, higher
renovascular resistance, lower absolute GFR, and lower renal
plasma flow. There are differences on the cellular level as well:
males have larger mitochondria and more lysosomes and ribosomes
in their proximal tubular cells. Although estrogen and androgen
receptors are found in renal tissue in both sexes, animal experimen-
tal models (e.g., castration, ovariectomy) suggest that sex hor-
mones are involved in the sexual dimorphism of the kidney [21].

Female sex is a protective factor in several renal diseases which
disappear after menopause. Not only the outcome of AKI is better
in females [22, 23], but the progression of renal function deterio-
ration during the aging process [24] as well as other chronic renal
diseases [25] is also slower in females compared to males. Some
studies support the protective role of female hormones (17-
β-estradiol, progesterone) [26–28]. Others highlight the negative
effect of testosterone: Park et al. found more severe renal injury
after testosterone therapy in female, ovariectomized, and castrated
male mice [29].

For the aforementioned reasons the use of female rodents is
only advised if the study specifically aims to investigate sex differ-
ences or the role of sex hormones. Duration of the estrous cycle is
4–5 days in both rats and mice; a vaginal smear has to be obtained
and stages of the estrous cycle have to be identified before starting
an experiment. C. Caligioni provides a detailed description of
assessing the reproductive status of mice [30].

3.4 Other Species Some nonrodent species are also used, although less frequently. In
theory, nonhuman primates are the most similar to human biology,
but the heterogeneity is huge among species. Close approximation
of genetic, structural, and functional features of nonhuman pri-
mates to humans make them ideal experimental models; however,
specific ethical considerations are essential [31]. These animals are
likely to sense pain, distress, and social relationships in the same way
as humans. Moreover, they are expensive to obtain and house, may
transmit diseases to humans, and can be difficult to handle due to
their strength and intelligence. Experiments with nonhuman pri-
mates are limited to a very small number of animals compared to
rodents; thus, their statistical value can be doubtful.

Work using dogs played an enormous role in the early advance-
ment of dialysis and transplantation techniques, or the use of
azathioprine in immunosuppression, and others [32]. However,
ethical considerations and strong feelings of the public have sub-
stantially limited the use of companion animals for research
purposes.
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Farm animals such as pigs are fairly similar to humans in renal
anatomy, size, and metabolism. Pigs are the subject of extensive
research especially as a potential source of kidneys for xenotrans-
plantation [33]. The size of fully grown pigs limits routine labora-
tory use; moreover, potential virus or prion transmission from pigs
to humans will possibly reduce their use as xenograft sources.

4 Models of AKI

4.1 Ischemia–

Reperfusion Injury

Renal IRI is the most common cause of AKI in patients and
temporary occlusion of renal blood flow is unavoidable during
kidney transplantation. Therefore, models that accurately and
reproducibly replicate renal IRI are indispensable for investigating
the pathomechanism of AKI and for the development of novel
therapeutic agents. There are three commonly used models of
IRI: (1) bilateral clamping of renal arteries and veins; (2) unilateral
clamping; and (3) unilateral clamping with contralateral nephrec-
tomy [34]. The bilateral model is regularly used because it is
considered most relevant to human pathology where blood supply
is typically affected in both kidneys. Some studies performed dec-
apsulation prior to renal ischemia that may have renoprotective
effects, as reported earlier [35]. However, decapsulation was not
conducted in the majority of published studies. Unilateral IRI
models without contralateral nephrectomy leave animals with a
healthy kidney which takes over the excretory function. Conse-
quently, this model allows for the study of the effect of prolonged
ischemia times without excessive postprocedure lethal outcomes.
On the other hand, this model does not allow the study of filtration
and excretory function of the affected kidney after IRI because of
the compensation achieved by the unaffected healthy kidney. In the
third model right nephrectomy is performed at the time of left
kidney IRI. Tissue from the removed right kidney can be used as
highly valuable control in studies where pretreatment that induces
or suppresses specific gene or protein expression is involved. Thus,
changes in the molecule of interest can be confirmed and quantified
in each individual animal used in the experiment. This model is
most useful when the researcher aims to test the effect of drugs or
compounds administered prior to the induction of IRI, further-
more overall survival is more reliable than with bilateral clamping
and this model closely mimics the situation occurring in renal
transplantation. Several studies suggest the protective potential of
contralateral nephrectomy against IRI by increasing blood flow and
other beneficial pleotropic effects (e.g., antiapoptotic, proliferative,
vasodilatory) in the remaining kidney [36], which should be taken
into consideration when designing an experiment.

The pathological consequences of renal IRI are proportional to
the period of ischemia which has to be determined for the
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individual species, strain, sex, and age. Shorter ischemia causes
subclinical AKI, with minor histologic change and without any
functional deterioration as assessed by serum creatinine and BUN
[37]. As ischemia duration increases clinical AKI develops with
moderate renal damage accompanied by renal failure. If the extent
of injury is mild, then the full recovery of renal function can be
expected. However, longer ischemia generally leads to lethal kidney
damage, with continuously deteriorating kidney function and the
animals die due to uremia [38]. As a guide, 30–50 min and
20–35 min of occlusion respectively is generally used in rats and
mice. Clamping time, maintenance of body temperature, and the
type of anesthesia are key parameters to be standardized for
reproducibility.

4.2 Renal

Transplantation

Renal transplantation is predominantly performed in rats due to the
challenging microsurgical techniques involved. Depending on the
aim of the study various combinations of inbred and outbred strains
model various complications of kidney transplantation such as IRI,
acute rejection, or chronic allograft nephropathy [39]. Autotrans-
plantation models are ideal for the study of alloantigen-
independent mechanisms such as IRI or the effect of cold storage
on the organ. Fisher and Lewis rat strains differ at the major
histocompatibility loci I and II which results in chronic allograft
nephropathy if no immunosuppression is applied. Thus, transplan-
tation from a Fisher donor to a Lewis recipient is the most com-
monly used model of chronic allograft nephropathy [40]. Other
strains—both as donor and recipient—include outbred strains:
Sprague-Dawley, Wistar, and Long-Evans; or inbred strains:
Lewis, Brown-Norway, and Dark Agouti [41–43].

A large number of different surgical techniques have been
reported, probably due to the technical difficulties associated with
rat renal transplantation. Detailed procedures are available in an
excellent review by Schumacher et al. which describes all technical
aspects, different techniques of vascular anastomosis, strain selec-
tion, and more [44].

4.3 Sepsis-Induced

AKI

Sepsis is a complex disease that involves at least two stages, which
should ideally be reproduced in animal models. An initial proin-
flammatory burst resulting in hypodynamic circulation with hypo-
tension and organ dysfunction is followed by compensatory
immune depression, with hyperdynamic circulation, but these can
overlap. There are three types of sepsis animal models: exogenous
toxin (e.g., LPS)-induced; alteration of endogenous protective
barriers (e.g., cecal ligation and puncture (CLP) or colon ascendens
stent peritonitis (CASP)); or exogenous bacteria-induced. The LPS
model is predominantly used in rodents as the standard CLP model
does not develop AKI, while bacterial infusion models are estab-
lished mainly in larger animals such as dogs and sheep. C. N. May’s
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group established a model of hyperdynamic sepsis in conscious
sheep. In this model sepsis is induced by intravenous infusion of
live Escherichia coli and is characterized by hypotension, tachycar-
dia, peripheral vasodilation, and AKI [45].

Advantages of LPS injection are that its simple, sterile, and
induces systemic inflammation that has many similarities with hypo-
dynamic sepsis pathophysiology in humans. The disadvantage is
that early and transient proinflammatory mediator production is
more intense than in humans. LPS causes decreased GFR, increased
BUN levels, and neutrophil infiltration in the kidney [46]. LPS
dose can be titrated to mimic different aspects of sepsis: typical LPS
doses cause systemic hypotension and decreased glomerular perfu-
sion, while lower doses do not cause systemic hypotension but
decrease glomerular perfusion [47].

4.4 Toxin-Induced

AKI

4.4.1 Cisplatin

Cisplatin is a widely used anticancer drug; however, high doses have
significant toxic effects on proximal tubules. Cisplatin treatment
leads to inflammation and interstitial fibrosis, moreover renal blood
flow is also altered. Most studies use a single i.p. injection of
6–20 mg/kg cisplatin in rats, which induces AKI within 72 h and
both pathology and recovery phase are comparable to those of
humans [48]. Higher doses are also used, albeit less frequently
[49, 50].

4.4.2 Contrast-Induced

AKI (CIAKI)

Intravascular administration of iodinated X-ray contrast media
(CM) for computer tomography, MRI or angiography can induce
AKI characterized by renal tissue hypoxia due to reduced renal
blood flow and consequent oxidative stress [51]. Incidence varies
between 3% and 25% depending on several factors. Firstly, the
potential to cause CIAKI is less when CM are given intravenously
(typically in lower doses, e.g., for computed tomography or uro-
graphy) than intra-arterially (often in higher doses, e.g., for cardiac
procedures), because the renal first-pass concentration is higher for
the latter route of administration. Secondly, physicochemical prop-
erties of CM solutions such as osmolality and viscosity impinge on
their different safety profiles. Thirdly, hydration status of the
patient plays an important role. Finally, preexisting conditions
such as endothelial dysfunction, for example related to diabetes
mellitus, and impaired renal function increase the risk of
CIAKI [51].

There are a number of models that reliably induce CIAKI in
otherwise healthy animals. The clinical setting of cardiac proce-
dures is emulated by a model, in which a 1.5 mL bolus of a high
viscous CM (iodixanol 320 mg iodine/mL) is injected into the
thoracic aorta of naı̈ve rats [52–54]. A high dose of intravenously
administered iodixanol (rat: 4 g iodine/kg body weight; rabbit: 5 g
iodine/kg body weight) also induces CIAKI [55, 56].
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In order to emulate conditions of patients who are at increased
risk for CIAKI, several animal models employing a combination of
contrast agent injection and other injuries (e.g., vasodilator inhibi-
tion, dehydration, IRI, diabetes) have been studied. Vasoconstric-
tion induced by inhibition of nitric oxide synthase (e.g., L-NAME,
10 mg/kg body weight) combined with prostaglandin synthesis
inhibition (indomethacin, 10 mg/kg body weight) prior to CM
administration (iohexol, 1 g iodine/kg body weight) has been
employed in rats and mice [57]. Another reliable murine model
of CIAKI includes 30 min bilateral renal ischemia and CM admin-
istration 24 h after reperfusion [58].

4.4.3 Aristolochic Acid

and Folic Acid

Both models are useful to study AKI to chronic kidney disease
(CKD) transition. Aristolochic acid nephropathy is characterized
by proximal tubular injury, necrosis and oxidative stress resulting in
progressive interstitial fibrosis [59]. Aristolochic acid is the under-
lying cause of Balkan nephropathy and Chinese Herb
nephropathy [60].

In folic acid nephropathy folic acid crystal deposits appear in
the tubular lumen resulting in obstruction and subsequent acute
tubular necrosis, tubular dilatation and cast formation. Mitochon-
drial dysfunction and early renal fibrosis are typical features of folic
acid nephropathy as well.

4.4.4 Glycerol In rhabdomyolysis skeletal muscle breakdown leads to the release of
intracellular proteins and toxic compounds into circulation. AKI is
a recurrent complication of rhabdomyolysis, mainly caused by
inflammation and oxidative stress. Human symptoms are repro-
duced in rodents by water deprivation for 24 h followed by glycerol
administration into the hindlimb muscle [61]. Elevated BUN and
serum creatinine levels in this model are not exclusively the result of
declined renal function, but rhabdomyolysis as well, thus GFR or
creatinine clearance measurement should be preferred.

5 Models of CKD

5.1 Unilateral

Ureteral

Obstruction (UUO)

Renal fibrosis is the hallmark of progressive kidney disease that
involves glomerular sclerosis tubulointerstitial fibrosis and athero-
sclerosis. UUO in rodents can be experimentally manipulated with
respect to timing, severity and duration, while reversal of the
obstruction allows the study of recovery. Complete UUO results
in reduced renal blood flow and GFR within 24 h, followed by
hydronephrosis, inflammation and tubular cell death within days.
In 1–2 weeks severe hydronephrosis and severe fibrosis develops.
The surgical procedure is relatively straightforward. Animals
undergo amidline incision, the left ureter is located and then ligated
[62]. Because clinical congenital obstructive nephropathy involves
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only partial obstruction, models of partial UUO have been devel-
oped in neonatal mice or rats. These models are, however, techni-
cally challenging and meticulous technique is essential. In one
method a piece of silicone tubing is slit and longitudinally fitted
around the ureter forming a sleeve. Another recommended tech-
nique involves placement of a fine stainless-steel wire parallel to the
ureter. After ligation the wire is pulled out leaving a partial obstruc-
tion. The ligature can then be removed at various time points to
study recoverymechanisms. Due to functional and cellular compen-
satory mechanisms we recommend using sham-operated animals as
controls instead of the contralateral kidney (unless comparing a
therapeutic intervention on the obstructed kidney).

5.2 5/6 Nephrectomy The 5/6 nephrectomy model mimics progressive renal failure after
loss of renal mass in humans. The recommended approach is
removal of the right kidney and resection of the upper and lower
poles of the left kidney (2/3 of the kidney) [63]. The approach
where branches of the renal artery are ligated is not feasible in mice
due to their limited renal artery branching. Remnant kidneys
develop glomerulosclerosis, tubulointerstitial fibrosis, renal atro-
phy and proteinuria. Susceptibility to renal injury in the 5/6
nephrectomy model is highly variable between different strains.
C57BL/6 mice are resistant compared to 129/Sv or Swiss Webster
mice.

5.3 Models of DKD DKD is the leading cause of end-stage kidney disease worldwide.
Unfortunately, animal models that replicate all important func-
tional, structural and molecular features of human DKD are lack-
ing. In both mice and rats, type 1 diabetes mellitus (T1DM) can be
induced by streptozotocin, which is transported by GLUT2 trans-
porter and destroys pancreatic beta cells. Renal and hepatic cells
also express GLUT2, thus streptozotocin has additional direct
nephrotoxic and hepatotoxic effects apart from the injury induced
by diabetes [64]. Genetic models of T1DM such as Akita and
OVE26 mice are also available [65]. T1DM can be induced by
streptozotocin injection in DBA/2J mice, which are susceptible
to nephropathy [16]. Streptozotocin induces T1DM with hyper-
lipidemia in ApoE�/� mice [66].

Models of type 2 diabetes mellitus (T2DM) utilize genetically
obese rodents such as ob/ob mice, db/db mice, or Zucker rats
[67, 68]. These animals are either leptin deficient or have inactivat-
ing mutations in the leptin receptor. High-fat diet can be useful to
investigate the mechanisms of insulin resistance, even though the
animals do not exhibit classical features of human DKD, they rarely
become hyperglycemic and high-fat diet alone may cause renal
injury. MKR mice can be used in a nonobese model of T2DM
because the insulin receptor is dysfunctional resulting in insulin
resistance, hyperglycemia and hyperlipidemia [69].
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5.4 Models

of Polycystic Kidney

Disease

Polycystic kidney disease (PKD) is a genetic disorder associated
with cystic bile ducts, bile duct proliferation, and cystic pancreatic
ducts. There are two types of PKD in humans: the autosomal
dominant PKD (ADPKD) caused by mutations in the PKD1 or
PKD2 gene, and autosomal recessive PKD (ARPKD) caused by a
mutation in the PKHD1 gene. In ADPKD the renal parenchyma is
replaced by cysts originating from all segments of the nephron,
collecting tubules, and ducts. In ARPKD cysts originate only
from dilated collecting tubules and ducts.

In spontaneous hereditary models of PKD animals have obvi-
ous PKD phenotypes, but the responsible genes are not necessarily
orthologous with the human genes. Examples of such models are
Han:SPRD-Cy rats [70], PCK rats [71], Pcy mice [72], and Jck
mice [73].

Transgenic mouse models have also been developed. Thivierge
et al. produced a model with a bacterial artificial chromosome in
which PKD1 gene expression is increased in the kidney, heart and
liver, and the gene product PC1 is overexpressed in renal cysts
[74]. Several transgenic models have been developed by deletion
of human orthologous genes Pkd1 [75], Pkd2 [76] or Pkhd1
[77]. Nagao et al. published a detailed review of PKD models [78].

5.5 Models

of Hypertension

5.5.1 Spontaneously

Hypertensive Rats (SHR)

The SHR rat strain was generated by protracted rounds of breeding
and selection for high blood pressure. SHR rats develop hyperten-
sion at 5–6 weeks of age and systolic blood pressure of
180–200 mmHg by adulthood with high renin levels. Proteinuria
increases from 6 weeks of age, GFR decreases by 20% by 15 weeks
of age and glomerulosclerosis and tubulointerstitial fibrosis devel-
ops at around 50 weeks of age. Progression of hypertensive renal
damage in this model mirrors that seen in human hypertension
[79]. Unilateral nephrectomy may be required to induce significant
renal injury [80].

5.5.2

Deoxycorticosterone

Acetate (DOCA)–Salt

Hypertension

The subcutaneous implantation of a DOCA pellet, uninephrect-
omy, and supplementation of 1% NaCl in drinking water or high-
salt diet induces moderate-to-severe hypertension with renal injury
and low renin levels [81]. Angiotensin II administration can aggra-
vate renal injury. Renal pathological changes include proteinuria,
fibrotic alterations, and impaired endothelium-dependent
relaxation.

5.6 Podocyte Injury

Models

Focal segmental glomerulosclerosis (FSGS) is the primary cause of
glomerular diseases, characterized by proteinuria or nephrotic syn-
drome. Fibrotic lesions in some glomeruli (focal) or in specific parts
of a single glomerulus (segmental) are the histological features of
the disease.

In animal models FSGS can be induced by podocyte toxins
such as puromycin, aminonucleoside or adriamycin [82]. The
main disadvantage of drug-induced models is the uncertainty of
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their similarity to human pathology of the disease as well as a robust
variability between rodent strains in susceptibility (e.g., C57BL/6
mice are far more resistant than BALB/c) [83].

Spontaneous FSGS models include the Buffalo/MWF and
Munich Wistar Fromter rat models [84, 85]. Excellent transgenic
models include the Nep25 mouse model [86], the diphtheria toxin
rat model, the Thy-1.1 mouse model [87], and others. Genetically
engineered mouse models give valuable insight to protein–protein
interactions and their role in the prognosis of FSGS. Yang et al.
provide a comprehensive review of FSGS rodent models [88].

6 Humanized Mouse Models

Many elements of mouse biological systems are different from
those of humans, especially their immune system. Humanized
mice have become important preclinical tools to accurately recapit-
ulate human biological systems. Presently there are three widely
used strains of immunodeficient mice: NOD.Cg-Prkdcsci-
dIl2rgtm1Wjl (NSG), NODShi.Cg-PrkdcscidIl2rgtm1Sug (NOG) and
C;129S4-Rag2tm1FlvIl2rgtm1Flv (BRG), which lack T, B, and NK
cells and have functionally impaired dendritic cells and macro-
phages. These mice are engrafted with human transplants including
peripheral blood mononuclear cells, a combination of bone mar-
row, liver, and thymus, or hematopoietic stem cells [89]. Huma-
nized mouse models have tremendous potential in the study of the
mechanisms of allograft rejection during transplantation or
immune-mediated renal diseases such as T1DM [90, 91].
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