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Abstract

Existing clinical markers for renal disease are limited. Hyperpolarized (HP) 13C MRI is based on the
technology of dissolution dynamic nuclear polarization (DNP) and provides new avenues for imaging
kidney structure, function, and most notably, renal metabolism, addressing some of these prior limitations.
Changes in kidney structure and function associated with kidney disease can be evaluated using [13C]urea, a
metabolically inert tracer. Metabolic changes can be assessed using [1-13C]pyruvate and a range of other
rapidly metabolized small molecules, which mainly probe central carbon metabolism. Results from numer-
ous preclinical studies using a variety of these probes demonstrated that this approach holds great potential
for monitoring renal disease, although more work is needed to bridge intelligently into clinical studies.
Here we introduce the general concept of HP 13C MRI and review the most relevant probes and applica-
tions to renal disease, including kidney cancer, diabetic nephropathy and ischemic kidney injury.
This chapter is based upon work from the PARENCHIMA COST Action, a community-driven network

funded by the European Cooperation in Science and Technology (COST) program of the European
Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This
introduction chapter is complemented by two separate chapters describing the experimental procedure and
data analysis.
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1 Introduction

While renal MRI has traditionally been limited largely to morpho-
logic depiction of vascular disease and neoplasia, hyperpolarized
(HP) 13C MRI supplies new metabolic and/or functional insight
that could be valuable for a range of kidney diseases. The high renal
delivery of intravenously injected small molecules, which provides
extraordinary sensitivity for renal imaging of HP 13C MRI probes,
suggests great potential for application of this nascent medical
imaging modality to kidney disease.
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Commonly used clinical markers for kidney disease have signif-
icant limitations, especially in the context of early disease. Serum
creatinine is frequently utilized as a functional marker, but has a
wide reference interval, and the mathematical corrections applied
for the estimation of glomerular filtration rate (GFR) are inexact.
For example, GFR is unpredictably overestimated in glomerulo-
pathic patients as a result of increased creatinine secretion [1]. Even
accurately measured GFR, such as by the “gold standard” inulin
clearance, is insensitive to early disease [2]. Blood urea nitrogen
(BUN) fluctuates due to factors unrelated to kidney function, such
as hydration status and diet. Proteinuria at baseline is a significant
risk factor for renal disease, but has poor negative predictive value
[3]. In general, clinical markers do not exhibit definitive changes
until a significant fraction of kidney function is already lost.

Medical imaging has clear potential to address these limitations
by providing localized functional data, but this has yet to be trans-
lated on a large scale. Nuclear medicine plays a significant role, with
(mercaptoacetyltriglycine) MAG3 scintigraphy estimated to
account for >400,000 renograms per year [4], commonly for
evaluation of renal function (often pre- or post-transplant), split
function, collecting duct/urinary tract obstruction, renovascular
hypertension, and renal artery stenosis. However, nuclear scans
typically have relatively poor spatial resolution and lack the rich
tissue contrast of MRI. Furthermore, these studies carry the risks
of exposure to ionizing radiation. Ultrasound is also commonly
used for assessing kidney disease [5], but is generally limited to
evaluating advanced damage reflected in alterations in kidney size
and shape, and to some extent blood flow. For patients with
impaired renal function, iodinated Computer Tomography
(CT) contrast media carry an increased risks of acute kidney injury
[6]. Gadolinium based MRI contrast media are associated with
nephrogenic systemic fibrosis [7].

HP 13C MRI has unique potential for improved, safer clinical
imaging studies of renal structure and function, and perhaps most
notably offers an unprecedented avenue toward assessing renal
metabolism in vivo. Indeed, results of numerous preclinical studies
conducted to date, as summarized below, show the clear potential
of this new approach to fill pressing unmet clinical needs for
improved markers of various diseases affecting the kidneys, both
malignant and nonmalignant. More preclinical work with realistic
renal disease models is, however, needed in order to bridge effec-
tively into clinical studies.

This introduction chapter is complemented by two separate
chapters describing the experimental procedure and data analysis,
which are part of this book.

This chapter is part of the book Pohlmann A, Niendorf T (eds)
(2020) Preclinical MRI of the Kidney—Methods and Protocols.
Springer, New York.
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2 Measurement Concept

2.1 Basic Concept

of HP 13C MRI

HP 13C MRI is based on a transient enhancement of the nuclear
magnetism of 13C-enriched liquids, by up to five orders of magni-
tude over states readily attainable in a clinical MRI magnet, thereby
offsetting the limitation of poor sensitivity that previously ham-
pered in vivo 13C MRI. Although multiple alternate approaches
exist for producing HP material, the method of dissolution
dynamic nuclear polarization (DNP) [8] provides an especially
robust avenue for hyperpolarizing a wide variety of 13C-labeled
substrates, using commercially available instruments. In this
approach, the 13C substrate is first prepolarized in a separate mag-
net at low temperature (see Note 1), primarily through microwave
irradiation applied near the electron paramagnetic resonance (EPR)
frequency in the presence of a stable organic free radical (aka
electron paramagnetic agent or EPA, usually a trityl radical) (see
Note 2). Following a period of polarization buildup, the solid
sample is rapidly dissolved into a liquid state where it temporarily
maintains its hyperpolarization, and is quickly transferred to the
MRI scanner for intravenous injection and imaging (see Note 3).
The overall process is illustrated in Fig. 1. The transient hyperpo-
larized state persists for a period of time determined by the sub-
strate’s T1 relaxation time, an exponential time constant governing
the rate of decay of polarization (see Note 4). Inverse scaling of T1

with molecular size limits the scope of applicable probes to small
molecules, with labels preferably located distal to bonded hydrogen
atoms, which can destroy the 13Cmagnetization via 13C-1H dipolar
coupling (see Note 5). During the decay period, 13C MRI data is
collected, capitalizing on the sensitivity enhancement afforded by
hyperpolarization. Specific methods for data acquisition and pro-
cessing of HP 13C MRI data are described in the relevant sections
to follow.

2.2 Renal Functional

and Metabolic

Investigations Using

HP 13C MRI

HP 13C MRI offers many new possibilities for renal functional and
metabolic investigations. Dynamic images of the real-time delivery
of metabolically inert tracers such as 13C urea from arterial vascula-
ture to the kidneys can be used to quantify renal function. Real-
time in vivo processing of metabolically active HP probes by the
kidneys can be tracked by spectroscopic imaging, which yields
separate images of injected tracer(s) and their downstream meta-
bolic product(s) based on chemical shift differences. Notably, mul-
tiple probes can also be simultaneously copolarized to yield
multiparametric data sets [9], for example spanning both renal
functional and metabolic parameters. In this section, we review
the most promising HP 13C MRI probes of renal function/metab-
olism proposed to date, and the relevant associated principles.
These probes and their metabolic pathways are illustrated in Fig. 2.
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2.2.1 [13C]Urea The key osmolyte and metabolic end product urea was one of the
first 13C-labeled molecules to be hyperpolarized (T1 ¼ 45 s at 3 T)
[8] and imaged in vivo [10], and high quality dynamic images of
the kidneys and the feeding arterial vasculature can readily be
generated [11–13]. Quantitative estimates of renal function require
dynamic measurements from both the renal parenchyma and arte-
rial vasculature [11, 14]. Urea is largely reabsorbed by urea trans-
porters (UTs) expressed at the inner medullary collecting ducts
(IMCD), and accordingly renal imaging shows distinct modulation
by hydration state [13, 15], based on differential action of vaso-
pressin. Despite this significant reabsorption, it has been suggested
that urea can also be used to estimate glomerular filtration rate
(GFR) [14], based on the first-order transfer coefficient between
arterial vasculature and renal parenchyma. Secondary labeling of
[13C]urea with 15N2 is helpful in terms of prolonging both T1

(at low magnetic fields only) [16] and T2 relaxation times [12] of
urea, with the latter factor allowing imaging rat kidneys at spatial
resolutions approaching 1 mm isotropic (using refocused image
acquisition) [13]. Furthermore, relaxation mapping shows great
promise for improved contrast between the individual kidney com-
partments and various functional states [12, 13, 17]. Urea is distin-
guished by an exceptionally good safety profile among medical
imaging contrast agents, even in patients with reduced kidney
function, and therefore has potential for clinical translation for
imaging patients with kidney diseases.

Fig. 1 Illustration of the process of HP 13C MRI via dissolution dynamic nuclear polarization. The agent (e.g.,
[1-13C]pyruvate) is mixed with the EPA and cooled to 0.8 K in a magnetic field of 5 T, then irradiated at 140GHz
to transfer polarization from unpaired electrons in the EPA to the 13C nuclei. The sample is then rapidly
dissolved and transferred to the MRI scanner for intravenous injection and MR imaging
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Fig. 2 HP 13C MRI probes of interest for monitoring renal disease, and the associated metabolic conversions
(if any). Positions of the 13C labels are indicated by stars
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2.2.2 [1-13C]Pyruvate Pyruvate, the end product of glycolysis and key metabolic interme-
diate, is the most widely studied 13C probe, in C1-labeled form
(T1 ¼ 60s at 3 T) [18]. In the kidneys, its interconversions with
lactate (via lactate dehydrogenase, LDH) and alanine (via alanine
transaminase, ALT), as well as its decarboxylation yielding [13C]
bicarbonate (via pyruvate dehydrogenase or PDH) can readily be
tracked by spectroscopic imaging. The extent of metabolic conver-
sion observed reflects a complex series of biophysical processes,
including vascular delivery, cellular uptake (via monocarboxylate
transporters), and finally enzymatic conversion, which in turn may
be influenced by multiple factors. For the conversion via LDH, the
lactate pool size is especially important [19, 20]. For quantitative
comparison among subjects, all of these factors are usually grouped
into simple parameters such as metabolite area-under-the-curve
(AUC) ratios or related apparent first-order conversion rates (e.g.,
kpyruvate-to-lactate or kpl) [21, 22], derived from a series of dynamic
spectroscopic imaging data. From ametabolic perspective, while the
conversion to bicarbonate is clearly a net flux, the conversions to
lactate and alanine via the respective bidirectional, highly active
enzymes appear to represent largely isotopic exchange fluxes into
the respective product metabolite pools [19, 20, 23]. Because of the
high bidirectional activity of LDH (which is restricted to cyto-
plasm), the ratio of lactate to pyruvate has frequently been inter-
preted as a marker for the cytosolic free NADH/NAD+ ratio
[24]. This suggests that the conversion of HP pyruvate to lactate
is driven by this NAD(H) redox state, a parameter that is fundamen-
tally inter-connected with numerous related biochemical reactions.

2.2.3 [1,4-13C2]Fumarate Cellular uptake of injected fumarate, a tricarboxylic acid (TCA)
cycle intermediate, is ordinarily highly restricted on the timescale
of HP experiments, due to its dicarboxylate structure. Compromise
of the cellular membrane (e.g., due to necrosis) allows access of
injected HP [1,4-13C2]fumarate (a singlet due to molecular sym-
metry, with T1 ¼ 58 s at 3 T) [25] to cellular fumarase, and
consequently detectable conversion of product HP [1,4-13C2]
malate. Thus, HP fumarate has been investigated as a specific
marker of cellular necrosis with potentially significant applicability
to detection of renal tubular necrosis [26].

2.2.4 [1-13C]

Dehydroascorbate

HP [1-13C]dehydroascorbate (T1 ¼ 56 s at 3 T) [27, 28] can be
used to probe oxidative stress in a direct manner. Vitamin C, a key
physiologic antioxidant, exists in a NADP(H)-mediated equilib-
rium with its oxidized form, dehydroascorbate (DHA). Conversion
of injected HP [1-13C]DHA, which is rapidly taken up by glucose
transporters, to [1-13C]vitamin C is detectable in vivo. The
observed extent of conversion of HP DHA to vitamin C, a reaction
whose reducing power is likely mostly derived from reduced gluta-
thione (GSH), is attenuated by oxidative stress.
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2.2.5 [13C]Acetoacetate The ketone body acetoacetate, a universal oxidative fuel, rapidly
interconverts with its reduced form, beta-hydroxybutyrate, in
mitochondria via beta-hydroxybutyrate dehydrogenase. In analogy
with lactate/pyruvate, the BOHB–AcAc ratio has frequently been
interpreted as a marker of the free mitochondrial NADH–NAD+

ratio, suggesting an analogous interpretation of conversion of HP
acetoacetate [29, 30] as being driven by the mitochondrial NAD
(H) redox state. Metabolic conversion of injected [1,3-13C2]acet-
oacetate (58 s at 3 T, C1 position) can be detected in rat kidney
in vivo (via the C1 label) [29], suggesting applicability of this new
probe to interrogate mitochondrial-driven kidney disease.

3 Overview of Applications

3.1 Kidney Cancer Multiple studies have reported elevated conversion of HP [1-13C]
pyruvate to [1-13C]lactate and rapid export of [1-13C]lactate in
renal cell carcinoma (RCC), in both RCC cells ex vivo [31–33] and
in vivo in mice orthotopically implanted with human RCC cells
[34]. These findings suggest that HP [1-13C]pyruvate MRI could
have clinical value for improved characterization of kidney cancer in
patients. Moreover, a recent study showed that HP [1-13C]pyru-
vate MRI could be used to predict RCC treatment response to
mTOR inhibition, which varies greatly among individual patients,
thus potentially informing treatment decisions [35].

3.2 Diabetic

Nephropathy

Diabetes results in profound shifts in central carbon metabolism,
directly shifting several pathways accessible to HP 13C MRI.
Although diabetes is detectable using relatively simple testing,
sustained hyperglycemia over time leads to serious end-organ com-
plications including diabetic nephropathy, a significant source of
morbidity, the detection/prediction of which is a difficult clinical
problem where HP 13CMRI could be valuable. Though cancer has
been the main focus of the HP 13C MRI community, several recent
studies have reported differences in renal HP 13C signals detected
in type 1 and type 2 diabetes models as compared to normal
controls, based on multiple HP probes including [1-13C]pyruvate
[23, 36, 37], [13C]urea [38, 39], and [1-13C]DHA [40]. Not
surprisingly, standard antidiabetic agents including insulin andmet-
formin have been found to induce large renal HP signal changes as
well [29, 41, 42]. Renal HP lactate levels are attenuated with
hyperbaric [43] and antioxidant treatment [44] in diabetic rats.
HP [13C]acetate has so far failed to show any significant metabolic
change associated with the diabetic kidney [45]. Further work is
needed in animal models of frank diabetic nephropathy, which may
display changes additive to the fundamental metabolic shifts
observed in diabetes, to address this important clinical problem.
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3.3 Ischemic Kidney

Injury

Effective detection of acute kidney injury (AKI) is an unresolved
clinical problem especially affecting hospitalized patients. Rapid
treatment of AKI is critical but is impeded by existing clinical
indicators which are poor in diagnosing early AKI. Several studies
of models of ischemia reperfusion injury (i.e., unilateral renal artery
clamp) have shown clear effects of AKI on renal HP 13CMRI using
[13C]urea [46, 47], pyruvate [48], and [1-13C]pyruvate–[1-13C]
DHA combination [49], and fumarate [50]. However, these rela-
tively simple models likely do not reflect the etiology of ischemic
injuries more frequently encountered in patients, such as those
resulting from atherosclerotic disease. Further work using more
realistic models of ischemic kidney injury is needed to answer, for
example, the important question of predicting treatment response
in renal artery stenosis. Finally, HP [1,4-13C2]fumarate has also
been investigated as a probe of tissue necrosis in a toxic folic acid
model of acute tubular necrosis (ATN) [26]. A nonzero urinary
fumarase activity could potentially be used as a clinical indicator for
a hyperpolarized fumarate examination to investigate the extent
and the origin of the renal damage [50].

4 Notes

1. The state-of-the-art GE SPINLab polarizer operates at 5 T and
a temperature of 0.8 K. Microwave irradiation is applied near
the EPR frequency corresponding to this magnetic field
(~140 GHz), with a typical power of ~20 mW. A buildup
time of ~3 h is typically required.

2. Urea and many other agents including fumarate and acetoace-
tate require the addition of a glassing agent such as glycerol or
DMSO to prevent crystallization upon freezing, which
impedes the polarization process.

3. The 13C concentration is made as high as possible in the start-
ing material (in the molar range), facilitating efficient polariza-
tion, but the concentration typically drops >10-fold on
dissolution. In contrast, the concentration of the radical is
only ~15 mM in the starting material.

4. The T1 exponential decay constant of HP 13C probe is directly
proportional to its “half-life,” by a factor of ln 2 (i.e., t1/
2 ¼ 0.69 � T1).

5. T1 values of 30–60 s are typical for the most useful probes, and
T1 values are magnetic field- and temperature-dependent.
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