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Renal pH Imaging Using Chemical Exchange Saturation
Transfer (CEST) MRI: Basic Concept
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Abstract

Magnetic Resonance Imaging (MRI) has been actively explored in the last several decades for assessing renal
function by providing several physiological information, including glomerular filtration rate, renal plasma
flow, tissue oxygenation and water diffusion. Within MRI, the developing field of chemical exchange
saturation transfer (CEST) has potential to provide further functional information for diagnosing kidney
diseases. Both endogenous produced molecules as well as exogenously administered CEST agents have
been exploited for providing functional information related to kidney diseases in preclinical studies. In
particular, CEST MRI has been exploited for assessing the acid-base homeostasis in the kidney and for
monitoring pH changes in several disease models. This review summarizes several CEST MRI procedures
for assessing kidney functionality and pH, for monitoring renal pH changes in different kidney injury
models and for evaluating renal allograft rejection.

This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network
funded by the European Cooperation in Science and Technology (COST) program of the European Union,
which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction
chapter is complemented by two separate chapters describing the experimental procedure and data analysis.

Key words Magnetic resonance imaging (MRI), Kidney, Mice, Rats, pH, Iopamidol, Chemical
exchange saturation transfer (CEST), Acute kidney injury, Ischemia—reperfusion injury, Renal damage

1 Introduction

Renal dysfunction is recognized as a significant health problem
originating from a variety of causes leading to acute or chronic
kidney diseases. Predisposition to acute kidney injury and prema-
ture mortality are frequent outcomes for chronic kidney diseases
[1]. Moreover, according to the Global Burden of Disease 2013
study, the age-standardized death rates for chronic kidney diseases
showed one of the highest increases in the last two decades
[2]. Therefore, reliable and early diagnosis of acute and chronic
kidney diseases is needed to preserve renal functionality and
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improve patients’ outcome. Despite these premises, current clinical
evaluation of renal function is still based on measurement of serum
creatinine, which is well known to have several limitations. In fact,
an elevated serum creatinine concentration is only discovered at late
stages of the disease when renal functionality is already compro-
mised. Therefore, novel noninvasive imaging approaches are
needed for a more accurate and early diagnosis of renal physiology.
Magnetic resonance imaging (MRI) has been exploited for tissue
anatomic imaging, owing to the high spatial resolution and lack of
ionizing radiation. In research, novel MRI techniques have been
investigated for assessing multiple functional parameters of the
kidneys, including perfusion, filtration, oxygenation and tissue
elasticity [3-11]. Several reviews covering the role of these MRI
approaches for assessing renal functionality have been published
[12-15]. This additional information should enable a better char-
acterization of acute and chronic kidney diseases in comparison to
standard urine and serum-based assays.

Recently, Chemical Exchange Saturation Transfer (CEST)
MRI has emerged as a novel approach for functional and molecular
imaging with great promise for clinical translation [16-18]. In
addition, CEST MRI pH imaging has emerged as a valuable
approach for assessing extracellular pH values in several tissues,
including kidneys and tumors, providing the highest accuracy and
spatial resolution achievable so far [19]. Owing to the key role of
the kidneys in maintaining the acid-base homeostasis, CEST MRI
pH mapping has emerged as a novel and promising approach in
monitoring kidney functionality.

In this chapter, we will address the basic concept and the
developments of renal CEST pH imaging with the emphasis on
kidney disease models in rodents.

This introduction chapter is complemented by two separate
chapters describing the experimental procedure and data analysis,
which are part of this book.

This chapter is part of the book Pohlmann A, Niendort T (eds)
(2020) Preclinical MRI of the Kidney—Methods and Protocols.
Springer, New York.

2 Measurement Concept

2.1 Basic Concept
of Chemical Exchange
Saturation Transfer
(CEST) Imaging

CEST is a new technique that enables the indirect detection of
molecules possessing mobile protons in exchange with water
[20]. Because of this, CEST makes MRI sensitive to endogenous
or exogenous molecules that possess suitable protons [21-32]. The
generation of contrast is based on a selective irradiation with a
radiofrequency pulse at the specific absorption frequency of the
exchanging proton, followed by a subsequent transfer, due to
chemical exchange with bulk water, of the saturated signal. Upon
the application of a long saturation RF (radiofrequency) pulse, the
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water signal decreases, allowing the amplification of the labeled
protons from the molecule to water. As a consequence, low con-
centration molecules can be specifically and indirectly detected,
owing to the frequency selective irradiation of their mobile proton

pool(s) [33-38].

Several classes of CEST contrast agents can be used as pH respon-
sive agents and exploited for in vivo experiments.

Several molecules, including natural occurring molecules, possess
exchangeable protons that can be indirectly detected within the
CEST approach [39]. Most of these labile protons have chemical
exchange rates that show a strong pH dependence. Hence ditfer-
ences in CEST contrast can be exploited for assessing the pH of the
solution where they are dissolved. Due to the concomitant contri-
bution of concentration and exchange rate to the observed CEST
contrast, several approaches have been proposed to rule out the
concentration term, based on the ratiometric method, that is,
taking the ratio of the observed contrast, providing accurate pH
readouts [40, 41]. Most of the pH responsive diamagnetic mole-
cules investigated so far in vivo are iodinated contrast agents used
for radiographic procedures, since they have been used in the last
40 years in clinical examinations owing to their high safety profiles
[42,43]. The presence of amide groups in their chemical structure
allow them to be exploited as CEST MRI contrast agents, upon
selective irradiation of the mobile proton pool [44].

Among the radiographic contrast media, Iopamidol (Isovue®,
Bracco Imaging, Italy) (Fig. 1) was the first agent exploited for
mapping pH thanks to the presence of two amide groups with
different resonance frequencies, at 4.2 ppm and at 5.5 ppm, respec-
tively, that can be selectively irradiated [45—47]. This chemical
peculiarity led to the development of a ratiometric approach
based on the ratio of the CEST effects at these two frequencies to
provide accurate pH measurements. In vitro experiments showed a
high pH responsiveness within the physiological range and accurate
pH measurements (Fig. 2a, b). Following intravenous administra-
tion, it can provide selective contrast at specific frequency offsets
and from the ratio of these two parametric maps it is possible to
measure renal pH map (Fig. 2¢c—f). To validate the approach and
test the pH-responsiveness of the agent, induced alkalinisation or
acidification of urine was obtained in mice upon providing acidic or
alkaline drinking water for a week. For control mice, mean pH
values calculated for cortex, medulla and calyx regions were:
7.0 £ 0.11; 6.85 £ 0.15 and 6.6 £+ 0.20, respectively. In mice
drinking acidic water a significant acidification of renal pH values
was obtained. Conversely, a marked increase of renal pH values was
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Fig. 1 Chemical structures of the reported pH-responsive CEST agents investigated for renal pH mapping
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Fig. 2 lopamidol ratiometric curve obtained from the rations of the CEST contrast upon irradiating at 4.2 and
5.5 ppm, respectively, showing the high pH responsiveness of lopamidol. Irradiation power levels of 3 pT,
lopamidol 30 mM, 7.05 T, 310 K, irradiation time 5 s (a). Calculated pH values obtained by the ratiometric
method (lopamidol 30 mM, 7.05 T, 310 K, irradiation time 5 s, By 3 puT) are compared with the values read on
the pH-meter (b). Representative images of in vivo renal pH mapping showing the anatomical image (c) and
the CEST contrast parametric maps overlaid to the anatomical image at 4.2 ppm (d) and 5.5 ppm (e) and the
observed pH map (f) obtained by ratioing maps (d) and (e) and using the calibration curve in (a) for calculating
the pH values. (Adapted with permission from Magnetic Resonance in Medicine 2011 (lopamidol as a
responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: in vivo
studies in mice at 7 T. Volume: 65, Issue: 1, Pages: 202—211, DOI: https:/doi.org/10.1002/mrm.22608))

observed upon alkaline water administration. Both observations
demonstrate the capability to measure in vivo renal pH changes
with CEST MRI.

Since the accuracy in measuring pH depends on several factors,
including chemical exchange rate, irradiation conditions (satura-
tion power and duration), and main magnetic field, quantification
of multisite pH-dependent chemical exchange properties is needed
to improve pH accuracy [48]. This characterization of chemical
exchange rates and optimal irradiation RF pulses led to the devel-
opment of an optimized saturation for each single amide proton
pools, hence resulting in a higher pH sensitivity. As a result, the
capability to measure pH was demonstrated also at magnetic field
strengths of 4.7 T, where amide resonances partially overlap. In the
study of Wu and coworkers, they demonstrated an improved pH
sensitivity, extending the pH detection range from 5.5 to 7.5, with
high resolution pH maps of the kidneys in healthy rats (Fig. 3)
[49]. More recently, the exploitation of the same ratiometric
approach for measuring in vivo pH was also demonstrated at mag-
netic fields as low as 3 T, which still preserved good pH
accuracy [50].
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Fig. 3 Extension of pH detection range using the modified ratiometric analysis (red circles) versus the standard
ratiometric approach (blue squares) (a). Representative in vivo ratiometric map for the proposed approach (b).
pH map shows the renal pH gradually decreasing from the cortex, medulla to calyx (c). Maps are overlaid on
the corresponding T,-weighted image. (Adapted with permission from Magnetic Resonance in Medicine 2018
(A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH
using lopamidol, Volume: 79, Issue: 3, Pages: 1553—-1558, DOI: https:/doi.org/10.1002/mrm.26817))

Another similar iodinated contrast media, Iopromide (Ultra-
vist®, Bayer Healthcare, Germany), was also demonstrated and
compared to Iopamidol for measuring pH, with a pH sensitivity
that was not substantially different, although Iopamidol allows for
more precise pH measurements [51].

The exploitation of the ratiometric approach requires two dis-
tinguishable protons pools on the same molecule, therefore it is
limited to a select group of compounds possessing this feature. To
overcome this limitation, Longo and Sun proposed a novel
approach based on the irradiation of a single pool under different
radiofrequency powers [52]. The proposed approach, called ratio
of RF power mismatch or RPM, was demonstrated by using Iobi-
tridol (Omnipaque®™, GE Healthcare, USA), a radiographic con-
trast medium possessing only one amide proton pool resonating at
5.5 ppm (Fig. 1). Since the measured CEST contrast is dependent
on both pH and irradiation power (B), a strong pH dependence
was demonstrated by calculating the ratio of the CEST contrast at
two different By power levels. In comparison to the conventional
ratiometric approach, a good pH accuracy and an even higher pH
sensitivity were demonstrated. When investigated in healthy
kidneys, the measured pH values upon iobitridol injection strongly
correlated with the pH values obtained following iopamidol injec-
tion. Recently, to overcome the specific absorption rate (SAR)
limitations when using a continuous wave (CW) irradiation of the
mobile proton pools, a pulsed ratiometric approach has been
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exploited and tested on the Todixanol (Visipaque®, GE Healthcare,
USA) X-ray contrast medium for CEST pH imaging [53].

Diamagnetic contrast agents possess resonances that are close
in frequency to the bulk water signal resulting in a reduction of
sensitivity (due to an inefficient labeling selectivity) when moving
from high to low magnetic fields. Following previous investiga-
tions, McMahon and colleagues developed new diamagnetic sys-
tems based on the imidazole, salicylate or anthranilate moieties
which possess mobile protons shifted very far from the bulk water
peak [54-56]. In particular, candidate compounds derived from
imidazole-4,5-dicarboxamides (#5 and #8, Fig. 1) show a CEST
signal shifted up to 7.8 ppm upfield by exploiting the presence of
intramolecular bond shifted hydrogens. Besides the large chemical
shift, a good pH sensitivity and a high-water solubility made com-
pound #5 suitable as a pH sensor and so it has been tested in vivo
[57]. pH imaging of the kidneys at 11.7 T resulted in average pH
values for the whole kidneys of 6.5 4 0.1, consistent with renal pH
values reported by radiographic contrast agents (Fig. 4).

Paramagnetic chemical exchange saturation transfer (paraCEST)
agents typically consist of a paramagnetic metal ion and an organic
chelate based on a macrocyclic cage due to the high kinetic stability
of these metal chelates to prevent the release of the toxic free
lanthanide cation [58]. The CEST signal is therefore generated by
selective irradiation of the bound water molecule, or of the slowly
exchanging ligand protons, such as hydroxyl, amine, or amide
groups [59-62]. The main advantage of paraCEST agents in com-
parison to diamagnetic ones relies in the exceptionally large chemi-
cal shifts (MR frequency relative to the water frequency) due to the
hypershift contribution of the lanthanide metal ion. This large
range of chemical shifts increases the specificity of the exchanging
proton pools, hence reducing the adverse contributions of direct
saturation and of the endogenous semisolid macromolecular effects
[63]. Since the chemical exchange rate of the paraCEST agent can
be altered by environmental factors such as pH, changes in CEST
amplitudes can be used as well for deriving pH values.

The first demonstration of CEST detection in kidneys using a
paraCEST agent (TmDOTA-4AmC, Fig. 1) was provided by
Vinogradov et al., showing good detectability in the whole kidney
regions [64]. Later on, a Europium paraCEST pH responsive agent
(europium(IIT) DO3A-tris(amide) complex, Fig. 1) was exploited
to measure pH in mouse kidneys [65]. Owing to its chemical
structure, a quite large frequency shift of the ion-bound water
molecule due to the delocalization of negative charge coming
from deprotonation of phenolic residue was observed. This shift
is pH dependent, therefore an alkalinisation from 6.0 to 7.6 at
298 K leads to a 4 ppm shift in frequencies, from 50.5 to
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Fig. 4 pH calibration curve of compound #5 (a) and calibration plot using all tubes in the phantom showing
experimental versus calculated pH (b). Experimental conditions: CEST data were obtained at 6.25 mM, 25 mM,
or 50 mM concentration, saturation time = 3 s, saturation power = 5.9 uT and 37 °C. pH measurements were
made with a precision of 4+0.1 unit. T,-weighted image (c) and pH map (d) following administration of
compound #5. (Adapted with permission from Contrast Media Molecular Imaging 2016 (Developing imidazoles
as CEST MRI pH sensors, Volume: 11, Issue: 4, Pages: 304-312, DOI: https:/doi.org/10.1002/cmmi.1693))

54.5 ppm, respectively, that can be exploited for assessing pH. By
exploiting a 9.4 T MR scanner and ensuring stable temperature
homogeneity, in vivo pH measurements were feasible in kidneys
upon the administration of a dose of 0.4 mmol/kg [66].

2.3 Imaging Readout  CEST MRI techniques includes continuous wave (CW) or pulsed
train RF saturation to prepare the magnetization followed by a fast
image readout such as echo planar imaging (EPI), Rapid Imaging
with Refocused Echoes (RARE) and/or fast imaging with steady-
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state precession (FISP) [45, 67, 68]. More advanced methods now
provide more sophisticated sampling schemes, such as 3D radial or
spiral acquisitions, but those are currently available only on clinical
scanners and not on preclinical scanners, thus limiting CEST acqui-
siion in mice and rats to single slice based approaches
[69, 70]. However, recent studies have utilized multislice acquisi-
tion schemes on preclinical scanners as well [67, 71, 72].

Fast spin echo (FSE) or rapid imaging with refocused echoes
(RARE) are commonly used because of the strong SNR (signal-
to-noise ratio), high tolerance to By inhomogeneities and moderate
to short acquisition times. These methods allow acquisitions of
several lines for full sampling the k-space for a single slice within a
single TR, which greatly reduces the acquisition time and still
preserves SNR. With single shot acquisitions, usually centric encod-
ing is exploited to maximize the SNR. Further reductions in acqui-
sition time can be achieved by adjusting the bandwidth (hence
reducing the echo times or the distance between each refocused
echo time) or by partial Fourier approaches (i.e., by acquiring only
a portion of the k-space).

FISP readout has been used with CEST MRI that provides robust
image readout with little distortion, although more sensitive to By
inhomogeneity than RARE. Bj inhomogeneity might be an impor-
tant issue particularly for body applications like the kidneys.

CEST MRI is often combined with EPI acquisition, which provides
fast image readout after a relatively long RF saturation. Whereas
both gradient echo and spin echo EPI have been used, SE EPI is
often preferred for body application because it is less susceptible to
mild magnetic field inhomogeneity distortions that are common in
body applications. The use of an EPI readout also enables multislice
acquisitions in reasonable times.

3 Overview of Applications

3.1 Endogenous
CEST Methods

for Assessing Renal
Diseases

CEST imaging has been exploited for assessing renal pH values in
healthy and in several models of renal damage, including either
bilateral or unilateral acute kidney injury models. Both endogenous
CEST approaches and exogenous CEST approaches have been
proposed and validated in vivo.

Since diabetic nephropathies (DNs) are associated with changes in
renal metabolites, the utility of CEST MRI to detect changes in
glucose /glycogen hydroxylic protons was investigated in murine
models of diabetic nephropathies. The study was conducted longi-
tudinally from 8 to 24 weeks on two groups of diabetic mice and on
nondiabetic mice as control. Based on the variation of glucose/
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3.2 CEST pH Imaging
for Assessing Renal
Diseases

3.3 GlucoCEST
Imaging for Assessing
Renal Diseases

glycogen composition and the consequent CEST effects measured
in kidney regions, a significantly increased CEST of hydroxyl meta-
bolites was observed in diabetic mice during the progression of
DN [73].

Most of the studies reported so far have exploited the
pH-responsiveness of Iopamidol for investigating the changes in
pH homeostasis following renal injuries. In one of these studies, the
pH evolution in an acute kidney injury model induced by intramus-
cular glycerol injection and consequent rhabdomyolysis was moni-
tored [74]. Renal pH maps acquired at 1, 3,7, 14, 21 days after the
injury reported a marked increase of pH values during the damage
evolution up to 3-7 days, followed by recovery of pH toward
baseline values at 14 and 21 days. These results were in good
agreement with morphological and Blood Urean Nitrogen
(BUN) quantification supporting this CEST MRI pH mapping
approach for investigating renal function. Furthermore, along
with the progression of the damage, a reduction of pixels where
Topamidol was detectable was observed, suggesting that also the
percentage of CEST-detected pixels can be used as an imaging
biomarker of renal injury.

In another study, Longo and coworkers investigated a unilat-
eral kidney ischemia reperfusion injury (KIRI) model to validate
MRI-CEST pH mapping for assessing single kidney functionality
[75]. Two different times of ischemia duration, 20 and 40 min,
were applied to model moderate or severe KIRI, respectively. Fol-
lowing the damage evolution at days 0, 1, 2, 7, a significant increase
in renal pH values was observed even at day 1 in both cases.
Furthermore, in the following MRI acquisitions a clear distinction
between moderate and severe AKI is possible since a recovery of
normal acid-base balance was observed only in the moderate KIRI
mice whereas in severe KIRI mice the increased pH values did not
restore to baseline values (Fig. 5a, b). In additions, as in the
previous study, the percentage of CEST detected pixels, represent-
ing a marker of the filtration fraction, showed significant differences
between the injured kidneys and the contralateral ones, reflecting
the different evolution of moderate-to-severe damage (Fig. 5¢, d).

Since the capability of CEST imaging to detect hydroxyl protons,
native glucose has also been proposed as a tracer for MRI Gluco-
CEST imaging [76-78]. Besides its exploitation in oncological
applications, it has been applied for monitoring allograft rejection
[79]. In this study, Brown Norway rat kidneys were transplanted
into Lewis rats and imaged 4 days following the surgery, before and
after glucose administration. By calculating the cortex-to-medulla
CEST ratio (CESTR), dependent on the accumulation of the
administered glucose, rats that underwent allogeneic transplant
showed the highest CESTR values compared to syngeneic trans-
plant group and to control mice.
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Fig. 5 MRI-CEST pH mapping detects renal pH changes and regional distribution of damage after moderate
and severe unilateral kidney ischemia reperfusion injury (KIRI) showing clamped (right) and contralateral
normal kidney (left). Representative MRI-CEST pH maps overimposed onto anatomical images before and after
moderate (a) and severe (b) KIRI at different time points (day 1, day 2, and day 7) showing pronounced
alkalinization and reduced filtration (noncolored pixels within the renal region, ¢, d) of the pH-responsive
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in Biomedicine 2017 (Noninvasive evaluation of renal pH homeostasis after ischemia reperfusion injury by
CEST-MRI, Volume: 30, Issue: 7, DOI: https:/doi.org/10.1002/nbm.3720))
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