Skip to main content

In Vivo Protein Lifetime Measurements Across Multiple Organs in the Zebrafish

  • Protocol
  • First Online:
Germline Development in the Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2218))

  • 982 Accesses

Abstract

Protein production and degradation are tightly regulated to prevent cellular structures from accumulating damage and to allow their correct functioning. A key aspect of this regulation is the protein half-life, corresponding to the time in which half of a specific protein population is exchanged with respect to its initial state. Proteome-wide techniques to investigate protein half-lives in vivo are emerging. Recently, we have established and thoroughly tested a metabolic labeling approach using 13C lysine (Lys(6)) for measuring protein lifetimes in mice. The approach is based on the fact that different proteins will incorporate a metabolic label at a rate that is dependent on their half-life. Using amino acid pool modeling and mass spectrometry, it is possible to measure the fraction of newly synthesized proteins and determine protein half-lives. In this chapter, we show how to extend this approach to zebrafish (Danio rerio), using a commercially available fish diet based on the stable isotope labeling by amino acids in cell culture (SILAC) technology. We describe the methods for labeling animals and subsequently use mass spectrometry to determine the lifetimes of a large number of proteins. In the mass spectrometry workflow proposed here, we have implemented the BoxCar data acquisition approach for increasing sample coverage and optimize machine use. To establish the proteome library used in the BoxCar approach, we recommend performing an in-solution digestion followed by peptide fractionation through basic reversed-phase chromatography. Overall, this chapter extends the use of current proteome technologies for the quantification of protein turnover to zebrafish and similar organisms and permits the study of germline changes following specific manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sala AJ, Bott LC, Morimoto RI (2017) Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol 216:1231–1241. https://doi.org/10.1083/jcb.201612111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Basisty N, Meyer JG, Schilling B (2018) Protein turnover in aging and longevity. Proteomics 18. https://doi.org/10.1002/pmic.201700108

  3. Schwanhäusser B, Gossen M, Dittmar G, Selbach M (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209. https://doi.org/10.1002/pmic.200800275

    Article  CAS  PubMed  Google Scholar 

  4. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63. https://doi.org/10.1038/nature07228

    Article  CAS  PubMed  Google Scholar 

  5. Fornasiero EF, Mandad S, Wildhagen H, Alevra M, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Sakib MS, Fard MK, Kirli K, Centeno TP, Vidal RO, Rahman R-U, Benito E, Fischer A, Dennerlein S, Rehling P, Feussner I, Bonn S, Simons M, Urlaub H, Rizzoli SO (2018) Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat Commun 9:4230. https://doi.org/10.1038/s41467-018-06519-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lau E, Cao Q, Ng DCM, Bleakley BJ, Dincer TU, Bot BM, Wang D, Liem DA, Lam MPY, Ge J (2016) A large dataset of protein dynamics in the mammalian heart proteome. Sci Data 3:160015. https://doi.org/10.1038/sdata.2016.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49:583–590. https://doi.org/10.1016/j.molcel.2013.01.029

    Article  CAS  PubMed  Google Scholar 

  8. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207. https://doi.org/10.1038/nature01511

    Article  CAS  PubMed  Google Scholar 

  9. Humphrey TJ, Davies DD (1975) A new method for the measurement of protein turnover. Biochem J 148:119–127. https://doi.org/10.1042/bj1480119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dietz WH, Wolfe MH, Wolfe RR (1982) A method for the rapid determination of protein turnover. Metabolism 31:749–754. https://doi.org/10.1016/0026-0495(82)90070-1

    Article  CAS  PubMed  Google Scholar 

  11. Schoenheimer R, Rittenberg D (1935) Deuterium as an indicator in the study of intermediary metabolism. Science 82:156–157. https://doi.org/10.1126/science.82.2120.156

    Article  CAS  PubMed  Google Scholar 

  12. Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR, Hetzer MW (2013) Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154:971–982. https://doi.org/10.1016/j.cell.2013.07.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandad S, Rahman R-U, Centeno TP, Vidal RO, Wildhagen H, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Kirli K, Benito E, Fischer A, Yousefi RY, Dennerlein S, Rehling P, Feussner I, Urlaub H, Bonn S, Rizzoli SO, Fornasiero EF (2018) The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Sci Rep 8:16913. https://doi.org/10.1038/s41598-018-35277-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Reckow S, Webhofer C, Boehme M, Gormanns P, Egge-Jacobsen WM, Turck CW (2011) Proteome scale turnover analysis in live animals using stable isotope metabolic labeling. Anal Chem 83:1665–1672. https://doi.org/10.1021/ac102755n

    Article  CAS  PubMed  Google Scholar 

  15. Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S (2010) Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci U S A 107:14508–14513. https://doi.org/10.1073/pnas.1006551107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schoenheimer R, Ratner S, Rittenberg D (2009) Studies in protein metabolism. Nutr Rev 40:23–26. https://doi.org/10.1111/j.1753-4887.1982.tb06822.x

    Article  Google Scholar 

  17. Ong S-E, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660. https://doi.org/10.1038/nprot.2006.427

    Article  CAS  PubMed  Google Scholar 

  18. Krüger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364. https://doi.org/10.1016/j.cell.2008.05.033

    Article  CAS  PubMed  Google Scholar 

  19. MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721–731. https://doi.org/10.1038/nrd4627

    Article  CAS  PubMed  Google Scholar 

  20. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367. https://doi.org/10.1038/nrg2091

    Article  CAS  PubMed  Google Scholar 

  21. Nolte H, Konzer A, Ruhs A, Jungblut B, Braun T, Krüger M (2014) Global protein expression profiling of zebrafish organs based on in vivo incorporation of stable isotopes. J Proteome Res 13:2162–2174. https://doi.org/10.1021/pr5000335

    Article  CAS  PubMed  Google Scholar 

  22. Geary B, Magee K, Cash P, Young IS, Whitfield PD, Doherty MK (2016) Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid. Proteomics 16:1398–1406. https://doi.org/10.1002/pmic.201500357

    Article  CAS  PubMed  Google Scholar 

  23. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717. https://doi.org/10.1074/mcp.O111.016717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meier F, Geyer PE, Virreira Winter S, Cox J, Mann M (2018) BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat Methods 15:440–448. https://doi.org/10.1038/s41592-018-0003-5

    Article  CAS  PubMed  Google Scholar 

  25. Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13:6176–6186. https://doi.org/10.1021/pr500893m

    Article  CAS  PubMed  Google Scholar 

  26. Alevra M, Mandad S, Ischebeck T, Urlaub H, Rizzoli SO, Fornasiero EF (2019) A mass spectrometry workflow for measuring protein turnover rates in vivo. Nat Protoc 14(12):3333–3365

    Article  CAS  Google Scholar 

  27. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura K, Aebersold R, Bairoch A, Dunn M, Celis J, Hanash S, Hochstrasser D, Humphrey-Smith I, James P, Klose J, LaBaer J, Langen H, Mann M, Parekh R, Patterson S, Pearce C, Poepstorff P, Simpson RJ, Tomlinson I, Tsugita A, Yates J (2004) From genome to proteome--aim of human proteomics. Seikagaku 76:1271–1274

    PubMed  Google Scholar 

  29. Gilbert MJH, Zerulla TC, Tierney KB (2014) Zebrafish (Danio rerio) as a model for the study of aging and exercise: physical ability and trainability decrease with age. Exp Gerontol 50:106–113. https://doi.org/10.1016/j.exger.2013.11.013

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by an EMBO Long Term Fellowship and a HFSP Fellowship to E.F.F. (EMBO_LT_797_2012 and HFSP_LT000830/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio F. Fornasiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mandad, S., Kracht, G., Fornasiero, E.F. (2021). In Vivo Protein Lifetime Measurements Across Multiple Organs in the Zebrafish . In: Dosch, R. (eds) Germline Development in the Zebrafish. Methods in Molecular Biology, vol 2218. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0970-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0970-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0969-9

  • Online ISBN: 978-1-0716-0970-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics