Skip to main content

Whole-Mount Immunofluorescence Staining of Early Mouse Embryos

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2214))

Abstract

Immunofluorescence staining enables the visualization of protein expression at a cellular or even sub-nuclear level. Whole-mount staining preserves the three-dimensional spatial information in biological samples allowing a comprehensive interpretation of expression domains. Here we describe the sample processing, protein detection using antibodies and confocal imaging of isolated preimplantation to early postimplantation mouse embryos up to Embryonic day 8.0 (E8.0).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Saiz N, Plusa B (2013) Early cell fate decisions in the mouse embryo. Reproduction 145(3):R65–R80. https://doi.org/10.1530/REP-12-0381

    Article  PubMed  CAS  Google Scholar 

  2. Takaoka K, Hamada H (2012) Cell fate decisions and axis determination in the early mouse embryo. Development 139(1):3–14. https://doi.org/10.1242/dev.060095

    Article  PubMed  CAS  Google Scholar 

  3. Tam PPL, Loebel DAF (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8:368–381. https://doi.org/10.1038/nrg2084

    Article  PubMed  CAS  Google Scholar 

  4. Rivera-Pérez JA, Mager J, Magnuson T (2003) Dynamic morphogenetic events characterize the mouse visceral endoderm. Dev Biol 261:470–487. https://doi.org/10.1016/S0012-1606(03)00302-6

    Article  PubMed  CAS  Google Scholar 

  5. Perea-Gomez A, Rhinn M, Ang SL (2001) Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo. Int J Dev Biol 45:311–320

    PubMed  CAS  Google Scholar 

  6. Perea-Gomez A, Vella FDJ, Shawlot W, Oulad-Abdelghani M, Chazaud C, Meno C, Pfister V, Chen L, Robertson E, Hamada H, Behringer RR, Ang SL (2002) Nodal antaginists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3:745–756. https://doi.org/10.1016/S1534-5807(02)00321-0

    Article  PubMed  CAS  Google Scholar 

  7. Boroviak T, Loos R, Lombard P, Okahara J, Behr R, Sasaki E, Nichols J, Smith A, Bertone P (2015) Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev Cell 35:366–382. https://doi.org/10.1016/j.devcel.2015.10.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685. https://doi.org/10.1016/j.devcel.2010.02.012

    Article  PubMed  CAS  Google Scholar 

  9. Cheng S, Pei Y, He L, Peng G, Reinius B, Tam PPL, Jing N, Deng Q (2019) Single-cell RNA-Seq reveals cellular heterogeneity of pluripotency transition and X chromosome dynamics during early mouse development. Cell Rep 26(10):2593–2607.e2593. https://doi.org/10.1016/j.celrep.2019.02.031

    Article  PubMed  CAS  Google Scholar 

  10. Pijuan-Sala B, Griffiths JA, Guibentif C, Hiscock TW, Jawaid W, Calero-Nieto FJ, Mulas C, Ibarra-Soria X, Tyser RCV, Ho DLL, Reik W, Srinivas S, Simons BD, Nichols J, Marioni JC, Göttgens B (2019) A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566(7745):490–495. https://doi.org/10.1038/s41586-019-0933-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624. https://doi.org/10.1016/j.devcel.2006.02.020

    Article  PubMed  CAS  Google Scholar 

  12. Nishioka N, Inoue K-i, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410. https://doi.org/10.1016/j.devcel.2009.02.003

    Article  PubMed  CAS  Google Scholar 

  13. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929. https://doi.org/10.1016/j.cell.2005.08.040

    Article  PubMed  CAS  Google Scholar 

  14. Cajal M, Lawson KA, Hill B, Moreau A, Rao J, Ross A, Collignon J, Camus A (2012) Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo. Development 139:423–436. https://doi.org/10.1242/dev.075499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE, Kondoh H (2011) Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470:394–398. https://doi.org/10.1038/nature09729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Peng G, Suo S, Chen J, Chen W, Liu C, Yu F, Wang R, Chen S, Sun N, Cui G, Song L, Tam PPL, Han JDJ, Jing N (2016) Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev Cell 36:681–697. https://doi.org/10.1016/j.devcel.2016.02.020

    Article  PubMed  CAS  Google Scholar 

  17. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg Å, Pontén F, Costea PI, Sahlén P, Mulder J, Bergmann O, Lundeberg J, Frisén J (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353(6294):78. https://doi.org/10.1126/science.aaf2403

    Article  PubMed  CAS  Google Scholar 

  18. Downs KM (2008) Systematic localization of Oct-3/4 to the gastrulating mouse conceptus suggests manifold roles in mammalian development. Dev Dyn 237:464–475. https://doi.org/10.1002/dvdy.21438

    Article  PubMed  CAS  Google Scholar 

  19. Sasaki K, Nakamura T, Okamoto I, Yabuta Y, Iwatani C, Tsuchiya H, Seita Y, Nakamura S, Shiraki N, Takakuwa T, Yamamoto T, Saitou M (2016) The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev Cell 39(2):169–185. https://doi.org/10.1016/j.devcel.2016.09.007

    Article  PubMed  CAS  Google Scholar 

  20. Osorno R, Tsakiridis A, Wong F, Cambray N, Economou C, Wilkie R, Blin G, Scotting PJ, Chambers I, Wilson V (2012) The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. J Cell Sci 125:e1.1–e1e1. https://doi.org/10.1242/jcs.115147

    Article  Google Scholar 

  21. Wymeersch FJ, Huang Y, Blin G, Cambray N, Wilkie R, Wong FCK, Wilson V (2016) Position-dependent plasticity of distinct progenitor types in the primitive streak. eLife 5:e10042. https://doi.org/10.7554/eLife.10042

    Article  PubMed  PubMed Central  Google Scholar 

  22. Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW (2007) 2,2′-Thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70(1):1–9. https://doi.org/10.1002/jemt.20396

    Article  PubMed  CAS  Google Scholar 

  23. Dodt HU, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgänsberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336. https://doi.org/10.1038/nmeth1036

    Article  PubMed  CAS  Google Scholar 

  24. Wallingford JB (2010) Preparation of fixed Xenopus embryos for confocal imaging. Cold Spring Harb Protoc 5:1–8. https://doi.org/10.1101/pdb.prot5426

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick C. K. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wong, F.C.K. (2021). Whole-Mount Immunofluorescence Staining of Early Mouse Embryos. In: Ancelin, K., Borensztein, M. (eds) Epigenetic Reprogramming During Mouse Embryogenesis. Methods in Molecular Biology, vol 2214. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0958-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0958-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0957-6

  • Online ISBN: 978-1-0716-0958-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics