Skip to main content

A Xenograft Model for Venous Malformation

  • Protocol
  • First Online:
Vascular Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2206))

Abstract

Xenograft models allow for an in vivo approach to monitor cellular functions within the context of a host microenvironment. Here we describe a protocol to generate a xenograft model of venous malformation (VM) based on the use of human umbilical vein endothelial cells (HUVEC) expressing a constitutive active form of the endothelial tyrosine kinase receptor TEK (TIE2 p.L914F) or patient-derived EC containing TIE2 and/or PIK3CA gene mutations. Hyperactive somatic TIE2 and PIK3CA mutations are a common hallmark of VM in patient lesions. The EC are injected subcutaneously on the back of athymic nude mice to generate ectatic vascular channels and recapitulate histopathological features of VM patient tissue histology. Lesion plugs with TIE2/PIK3CA-mutant EC are visibly vascularized within 7–9 days of subcutaneous injection, making this a great tool to study venous malformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87(7):1153–1155

    Article  CAS  Google Scholar 

  2. Brouillard P, Vikkula M (2007) Genetic causes of vascular malformations. Hum Mol Genet 16 Spec No. 2:R140–R149. https://doi.org/10.1093/hmg/ddm211

    Article  CAS  PubMed  Google Scholar 

  3. Dompmartin A, Vikkula M, Boon LM (2010) Venous malformation: update on aetiopathogenesis, diagnosis and management. Phlebology 25(5):224–235. https://doi.org/10.1258/phleb.2009.009041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vikkula M, Boon LM, Carraway KL 3rd, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87(7):1181–1190. S0092-8674(00)81814-0 [pii]

    Article  CAS  Google Scholar 

  5. Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, Davis GE (2009) Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114(2):237–247. https://doi.org/10.1182/blood-2008-12-196451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crist AM, Lee AR, Patel NR, Westhoff DE, Meadows SM (2018) Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis 21(2):363–380. https://doi.org/10.1007/s10456-018-9602-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson KV, Bague S, Scaltriti M, Antonescu CR, Baselga E, Baselga J (2016) Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med 8(332):332ra342. https://doi.org/10.1126/scitranslmed.aaf1164

    Article  CAS  Google Scholar 

  8. Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VE, Chivite I, Mila-Guasch M, Pearce W, Solomon I, Angulo-Urarte A, Figueiredo AM, Dewhurst RE, Knox RG, Clark GR, Scudamore CL, Badar A, Kalber TL, Foster J, Stuckey DJ, David AL, Phillips WA, Lythgoe MF, Wilson V, Semple RK, Sebire NJ, Kinsler VA, Graupera M, Vanhaesebroeck B (2016) Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci Transl Med 8(332):332ra343. https://doi.org/10.1126/scitranslmed.aad9982

    Article  CAS  Google Scholar 

  9. di Blasio L, Puliafito A, Gagliardi PA, Comunanza V, Somale D, Chiaverina G, Bussolino F, Primo L (2018) PI3K/mTOR inhibition promotes the regression of experimental vascular malformations driven by PIK3CA-activating mutations. Cell Death Dis 9(2):45. https://doi.org/10.1038/s41419-017-0064-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodriguez-Laguna L, Agra N, Ibanez K, Oliva-Molina G, Gordo G, Khurana N, Hominick D, Beato M, Colmenero I, Herranz G, Torres Canizalez JM, Rodriguez Pena R, Vallespin E, Martin-Arenas R, Del Pozo A, Villaverde C, Bustamante A, Ayuso C, Lapunzina P, Lopez-Gutierrez JC, Dellinger MT, Martinez-Glez V (2019) Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly. J Exp Med 216(2):407–418. https://doi.org/10.1084/jem.20181353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, Blanc E, Johnson SC, Hoguin C, Boccara O, Sarnacki S, Boddaert N, Pannier S, Martinez F, Magassa S, Yamaguchi J, Knebelmann B, Merville P, Grenier N, Joly D, Cormier-Daire V, Michot C, Bole-Feysot C, Picard A, Soupre V, Lyonnet S, Sadoine J, Slimani L, Chaussain C, Laroche-Raynaud C, Guibaud L, Broissand C, Amiel J, Legendre C, Terzi F, Canaud G (2018) Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 558(7711):540–546. https://doi.org/10.1038/s41586-018-0217-9

    Article  CAS  PubMed  Google Scholar 

  12. Du Z, Ma HL, Zhang ZY, Zheng JW, Wang YA (2018) Transgenic expression of A venous malformation related mutation, TIE2-R849W, significantly induces multiple malformations of zebrafish. Int J Med Sci 15(4):385–394. https://doi.org/10.7150/ijms.23054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okada S, Vaeteewoottacharn K, Kariya R (2019) Application of highly immunocompromised mice for the establishment of patient-derived xenograft (PDX) models. Cells 8(8). https://doi.org/10.3390/cells8080889

  14. Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinska E, Caldas C, Chang DK, Clarke RB, Clevers H, Coukos G, Dangles-Marie V, Eckhardt SG, Gonzalez-Suarez E, Hermans E, Hidalgo M, Jarzabek MA, de Jong S, Jonkers J, Kemper K, Lanfrancone L, Maelandsmo GM, Marangoni E, Marine JC, Medico E, Norum JH, Palmer HG, Peeper DS, Pelicci PG, Piris-Gimenez A, Roman-Roman S, Rueda OM, Seoane J, Serra V, Soucek L, Vanhecke D, Villanueva A, Vinolo E, Bertotti A, Trusolino L (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17(4):254–268. https://doi.org/10.1038/nrc.2016.140

    Article  CAS  PubMed  Google Scholar 

  15. Lin RZ, Lee CN, Moreno-Luna R, Neumeyer J, Piekarski B, Zhou P, Moses MA, Sachdev M, Pu WT, Emani S, Melero-Martin JM (2017) Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nat Biomed Eng:1. https://doi.org/10.1038/s41551-017-0081

  16. Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, Bischoff J (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103(2):194–202. https://doi.org/10.1161/CIRCRESAHA.108.178590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109(11):4761–4768

    Article  CAS  Google Scholar 

  18. Boscolo E, Limaye N, Huang L, Kang KT, Soblet J, Uebelhoer M, Mendola A, Natynki M, Seront E, Dupont S, Hammer J, Legrand C, Brugnara C, Eklund L, Vikkula M, Bischoff J, Boon LM (2015) Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest 125(9):3491–3504. https://doi.org/10.1172/JCI76004

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goines J, Li X, Cai Y, Mobberley-Schuman P, Metcalf M, Fishman SJ, Adams DM, Hammill AM, Boscolo E (2018) A xenograft model for venous malformation. Angiogenesis 21(4):725–735. https://doi.org/10.1007/s10456-018-9624-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Cai Y, Goines J, Pastura P, Brichta L, Lane A, Le Cras TD, Boscolo E (2019) Ponatinib combined with rapamycin causes regression of murine venous malformation. Arterioscler Thromb Vasc Biol 39(3):496–512. https://doi.org/10.1161/ATVBAHA.118.312315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allen P, Kang KT, Bischoff J (2015) Rapid onset of perfused blood vessels after implantation of ECFCs and MPCs in collagen, PuraMatrix and fibrin provisional matrices. J Tissue Eng Regen Med 9(5):632–636. https://doi.org/10.1002/term.1803

    Article  CAS  PubMed  Google Scholar 

  22. Allen P, Melero-Martin J, Bischoff J (2011) Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. J Tissue Eng Regen Med 5(4):e74–e86. https://doi.org/10.1002/term.389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Green MR, Sambrook J (2019) Estimation of cell number by hemocytometry counting. Cold Spring Harb Protoc 2019(11):pdb prot097980. https://doi.org/10.1101/pdb.prot097980

    Article  Google Scholar 

Download references

Acknowledgments

Research reported in this chapter was supported by the National Heart, Lung, and Blood Institute, under Award Number R01 HL117952 (E.B.), part of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Boscolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goines, J., Boscolo, E. (2021). A Xenograft Model for Venous Malformation. In: Ribatti, D. (eds) Vascular Morphogenesis. Methods in Molecular Biology, vol 2206. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0916-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0916-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0915-6

  • Online ISBN: 978-1-0716-0916-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics