Skip to main content

Proximity Labeling for the Identification of Coronavirus–Host Protein Interactions

  • Protocol
  • First Online:
Coronaviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2203))

Abstract

Biotin-based proximity labeling circumvents major pitfalls of classical biochemical approaches to identify protein–protein interactions. It consists of enzyme-catalyzed biotin tags ubiquitously apposed on proteins located in close proximity of the labeling enzyme, followed by affinity purification and identification of biotinylated proteins by mass spectrometry. Here we outline the methods by which the molecular microenvironment of the coronavirus replicase/transcriptase complex (RTC), i.e., proteins located within a close perimeter of the RTC, can be determined by different proximity labeling approaches using BirAR118G (BioID), TurboID, and APEX2. These factors represent a molecular signature of coronavirus RTCs and likely contribute to the viral life cycle, thereby constituting attractive targets for the development of antiviral intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zaki AM, van Boheemen S, Bestebroer TM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820

    Article  CAS  Google Scholar 

  2. Drosten C, Gunther S, Preiser W et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976

    Article  CAS  Google Scholar 

  3. de Wit E, van Doremalen N, Falzarano D et al (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14:523–534

    Article  Google Scholar 

  4. Graham RL, Donaldson EF, Baric RS (2013) A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 11:836–848

    Article  CAS  Google Scholar 

  5. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, Chen H-D, Chen J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen Y, Shen X-R, Wang X, Zheng X-S, Zhao K, Chen Q-J, Deng F, Liu L-L, Yan B, Zhan F-X, Wang Y-Y, Xiao G-F, Shi Z-L (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 (7798):270–273

    Google Scholar 

  6. Pedersen NC (2014) An update on feline infectious peritonitis: virology and immunopathogenesis. Vet J 201:123–132

    Article  Google Scholar 

  7. Lee C (2015) Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J 12:193

    Article  Google Scholar 

  8. Cavanagh D (2007) Coronavirus avian infectious bronchitis virus. Vet Res 38:281–297

    Article  CAS  Google Scholar 

  9. Knoops K, Kikkert M, Worm SH et al (2008) SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6:e226

    Article  Google Scholar 

  10. Maier HJ, Hawes PC, Cottam EM et al (2013) Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes. mBio 4:e00801–e00813

    Article  Google Scholar 

  11. Wong HH, Kumar P, Tay FP et al (2015) Genome-wide screen reveals valosin-containing protein requirement for coronavirus exit from endosomes. J Virol 89:11116–11128

    Article  CAS  Google Scholar 

  12. de Wilde AH, Wannee KF, Scholte FE et al (2015) A kinome-wide small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA-activated protein kinase and early secretory pathway proteins. J Virol 89:8318–8333

    Article  Google Scholar 

  13. Fung TS, Liu DX (2019) Human coronavirus: host-pathogen interaction. Annu Rev Microbiol 73:529–557

    Article  CAS  Google Scholar 

  14. Kim DI, Roux KJ (2016) Filling the void: proximity-based labeling of proteins in living cells. Trends Cell Biol 26:804–817

    Article  CAS  Google Scholar 

  15. Branon TC, Bosch JA, Sanchez AD et al (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36:880–887

    Article  CAS  Google Scholar 

  16. Roux KJ, Kim DI, Raida M et al (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810

    Article  CAS  Google Scholar 

  17. Hung V, Udeshi ND, Lam SS et al (2016) Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat Protoc 11:456–475

    Article  CAS  Google Scholar 

  18. Kim DI, Jensen SC, Noble KA et al (2016) An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 27:1188–1196

    Article  CAS  Google Scholar 

  19. V'kovski P, Gerber M, Kelly J et al (2019) Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. elife 8

    Google Scholar 

  20. Lam SS, Martell JD, Kamer KJ et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12:51–54

    Article  CAS  Google Scholar 

  21. Martell JD, Deerinck TJ, Lam SS et al (2017) Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat Protoc 12:1792–1816

    Article  CAS  Google Scholar 

  22. Fazal FM, Han S, Parker KR et al (2019) Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178:473–490.e26

    Article  CAS  Google Scholar 

  23. Roux KJ, Kim DI, Burke B (2013) BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci 74:Unit 19 23

    Article  Google Scholar 

  24. Schiller JJ, Kanjanahaluethai A, Baker SC (1998) Processing of the coronavirus MHV-JHM polymerase polyprotein: identification of precursors and proteolytic products spanning 400 kilodaltons of ORF1a. Virology 242:288–302

    Article  CAS  Google Scholar 

  25. Gosert R, Kanjanahaluethai A, Egger D et al (2002) RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76:3697–3708

    Article  CAS  Google Scholar 

  26. Freeman MC, Graham RL, Lu X et al (2014) Coronavirus replicase-reporter fusions provide quantitative analysis of replication and replication complex formation. J Virol 88:5319–5327

    Article  Google Scholar 

  27. Coley SE, Lavi E, Sawicki SG et al (2005) Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J Virol 79:3097–3106

    Article  CAS  Google Scholar 

  28. Eriksson KK, Makia D, Thiel V (2008) Generation of recombinant coronaviruses using vaccinia virus as the cloning vector and stable cell lines containing coronaviral replicon RNAs. Methods Mol Biol 454:237–254

    Article  CAS  Google Scholar 

  29. Cui Y, Ma L (2018) Sequential use of milk and bovine serum albumin for streptavidin-probed western blot. BioTechniques 65:125–126

    Article  CAS  Google Scholar 

  30. Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, Hui-Dong Chen, Jing Chen, Yun Luo, Hua Guo, Ren-Di Jiang, Mei-Qin Liu, Ying Chen, Xu-Rui Shen, Xi Wang, Xiao-Shuang Zheng, Kai Zhao, Quan-Jiao Chen, Fei Deng, Lin-Lin Liu, Bing Yan, Fa-Xian Zhan, Yan-Yi Wang, Geng-Fu Xiao, Zheng-Li Shi, (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 (7798):270-273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Thiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

V’kovski, P., Steiner, S., Thiel, V. (2020). Proximity Labeling for the Identification of Coronavirus–Host Protein Interactions. In: Maier, H., Bickerton, E. (eds) Coronaviruses. Methods in Molecular Biology, vol 2203. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0900-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0900-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0899-9

  • Online ISBN: 978-1-0716-0900-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics