Skip to main content

Screening and Production of Recombinant Human Proteins: Ligation-Independent Cloning

  • Protocol
  • First Online:
Book cover Structural Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2199))

Abstract

Structural genomics groups have identified the need to generate multiple truncated versions of each target to improve their success in producing a well-expressed, soluble, and stable protein and one that crystallizes and diffracts to a sufficient resolution for structural determination. At the Structural Genomics Consortium, we opted for the ligation-independent cloning (LIC) method which provides the throughput we desire to produce and screen many proteins in a parallel process. Here, we describe our LIC protocol for generating constructs in 96-well format and provide a choice of vectors suitable for expressing proteins in both E. coli and the baculovirus expression vector system (BEVS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zea A (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945

    Article  Google Scholar 

  2. Haun RS, Serventi IM, Moss J (1992) Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors. Biotechniques 13(4):515–518

    CAS  PubMed  Google Scholar 

  3. Sanjana NE, Cong L, Zhou Y et al (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7(1):171–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Potapov V, Ong JL, Kucera RB et al (2018) Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synth Biol 7(11):2665–2674

    Article  CAS  PubMed  Google Scholar 

  5. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10(11):1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Invitrogen (2010) Gateway® Technology: a universal technology to clone DNA sequences for functional analysis and expression in multiple systems. Invitrogen Life Technologies, Carlsbad

    Google Scholar 

  7. Walhout AJ, Temple GF, Brasch MA et al (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592

    Article  CAS  PubMed  Google Scholar 

  8. Li MZ, Elledge SJ (2005) MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat Genet 37(3):311–319

    Article  CAS  PubMed  Google Scholar 

  9. Clontech (2012) In-Fusion® HD cloning kit user manual. Clontech, Mountain View

    Google Scholar 

  10. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–256

    Article  CAS  PubMed  Google Scholar 

  11. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113

    Article  CAS  PubMed  Google Scholar 

  13. Graslund S, Sagemark J, Berglund H et al (2008) The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 58(2):210–221

    Article  PubMed  Google Scholar 

  14. Bray JE (2012) Target selection for structural genomics based on combining fold recognition and crystallisation prediction methods: application to the human proteome. J Struct Funct Genomics 13(1):37–46

    Article  CAS  PubMed  Google Scholar 

  15. Savitsky P, Bray J, Cooper CD et al (2010) High-throughput production of human proteins for crystallization: the SGC experience. J Struct Biol 172(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gay P, Le Coq D, Steinmetz M et al (1983) Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol 153(3):1424–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all the SGC scientists (past and present) who contributed toward the development of the method. The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA), Janssen, Merck KGaA, MSD, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome. The BacMam vector backbone (pHTBV1.1 ) was kindly provided by Professor Frederick Boyce (Massachusetts General Hospital, Cambridge, MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Burgess-Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Strain-Damerell, C., Mahajan, P., Fernandez-Cid, A., Gileadi, O., Burgess-Brown, N.A. (2021). Screening and Production of Recombinant Human Proteins: Ligation-Independent Cloning. In: Chen, Y.W., Yiu, CP.B. (eds) Structural Genomics. Methods in Molecular Biology, vol 2199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0892-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0892-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0891-3

  • Online ISBN: 978-1-0716-0892-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics