Skip to main content

Bioinformatic Tools in Arabidopsis Research

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2200))

Abstract

Bioinformatic tools are now an everyday part of a plant researcher’s collection of protocols. They allow almost instantaneous access to large data sets encompassing genomes, transcriptomes, proteomes, epigenomes, and other “-omes,” which are now being generated with increasing speed and decreasing cost. With the appropriate queries, such tools can generate quality hypotheses, sometimes without the need for new experimental data. In this chapter, we will investigate some of the tools used for examining gene expression and coexpression patterns, performing promoter analyses and functional classification enrichment for sets of genes, and exploring protein–protein and protein–DNA interactions in Arabidopsis. We will also cover additional tools that allow integration of data from several sources for improved hypothesis generation.

G. Alex Mason and Alex Cantó-Pastor are co-first authors.

This chapter is a revision of a chapter with the same name by Miguel de Lucas, Nicholas J. Provart, and Siobhan Brady in Arabidopsis Protocols (2014, 1062, pp 97–136), edited by José Juan Sanchez Serrano. All material has been revised and updated as of May 2019, and several new tools are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–597. https://doi.org/10.1016/j.molcel.2015.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chory J, Ecker JR, Briggs S et al (2000) National Science Foundation-Sponsored Workshop Report: “The 2010 Project” functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them. Plant Physiol 123:423–426. https://doi.org/10.1104/pp.123.2.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reiser L, Subramaniam S, Li D, Huala E (2017) Using the Arabidopsis Information Resource (TAIR) to find information about arabidopsis genes. Curr Protoc Bioinforma 60:1.11.1–1.11.45. https://doi.org/10.1002/cpbi.36

    Article  Google Scholar 

  4. Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. https://doi.org/10.1126/science.1086391

    Article  PubMed  Google Scholar 

  5. Krishnakumar V, Hanlon MR, Contrino S et al (2015) Araport: the Arabidopsis information portal. Nucleic Acids Res 43:D1003–D1009. https://doi.org/10.1093/nar/gku1200

    Article  CAS  PubMed  Google Scholar 

  6. Finkelstein RR, Somerville CR (1990) Three classes of abscisic acid (ABA)-insensitive mutations of arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94:1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21:1034–1051. https://doi.org/10.1105/tpc.109.066050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651. https://doi.org/10.1111/j.1365-3040.2009.02040.x

    Article  CAS  PubMed  Google Scholar 

  9. IAIC (2019) Arabidopsis bioinformatics resources: The current state, challenges, and priorities for the future. Plant Direct 3:e00109. https://doi.org/10.1002/pld3.109

    Article  Google Scholar 

  10. Mu J, Tan H, Zheng Q et al (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054. https://doi.org/10.1104/pp.108.126342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 1001 Genomes Consortium (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491. https://doi.org/10.1016/j.cell.2016.05.063

    Article  CAS  Google Scholar 

  12. Kersey PJ, Allen JE, Allot A et al (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46:D802–D808. https://doi.org/10.1093/nar/gkx1011

    Article  CAS  PubMed  Google Scholar 

  13. Hubbard T, Barker D, Birney E et al (2002) The Ensembl genome database project. Nucleic Acids Res 30:38–41. https://doi.org/10.1093/nar/30.1.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1:523–532. https://doi.org/10.1105/tpc.1.5.523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Bel M, Diels T, Vancaester E et al (2018) PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res 46:D1190–D1196. https://doi.org/10.1093/nar/gkx1002

    Article  CAS  PubMed  Google Scholar 

  16. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566. https://doi.org/10.1038/nprot.2013.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mi H, Muruganujan A, Huang X et al (2019) Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc 14:703. https://doi.org/10.1038/s41596-019-0128-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nelson ADL, Haug-Baltzell AK, Davey S et al (2018) EPIC-CoGe: managing and analyzing genomic data. Bioinformatics 34:2651–2653. https://doi.org/10.1093/bioinformatics/bty106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. The EPIC Planning Committee TEP (2012) Reading the second code: mapping epigenomes to understand plant growth, development, and adaptation to the environment. Plant Cell 24:2257–2261. https://doi.org/10.1105/tpc.112.100636

    Article  CAS  Google Scholar 

  20. Stroud H, Greenberg MVC, Feng S et al (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364. https://doi.org/10.1016/j.cell.2012.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roudier F, Ahmed I, Bérard C et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938. https://doi.org/10.1038/emboj.2011.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sullivan AM, Bubb KL, Sandstrom R et al (2015) DNase I hypersensitivity mapping, genomic footprinting, and transcription factor networks in plants. Curr Plant Biol 3–4:40–47. https://doi.org/10.1016/j.cpb.2015.10.001

    Article  Google Scholar 

  23. Kawakatsu T, Huang SC, Jupe F et al (2016) Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–505. https://doi.org/10.1016/j.cell.2016.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Winter D, Vinegar B, Nahal H et al (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PloS One 2:e718

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmid M, Davison TS, Henz SR et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506. https://doi.org/10.1038/ng1543

    Article  CAS  PubMed  Google Scholar 

  26. Nakabayashi K, Okamoto M, Koshiba T et al (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J Cell Mol Biol 41:697–709. https://doi.org/10.1111/j.1365-313X.2005.02337.x

    Article  CAS  Google Scholar 

  27. Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75. https://doi.org/10.1046/j.1365-313X.2003.01707.x

    Article  CAS  PubMed  Google Scholar 

  28. Klepikova AV, Kasianov AS, Gerasimov ES et al (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J 88:1058–1070. https://doi.org/10.1111/tpj.13312

    Article  CAS  PubMed  Google Scholar 

  29. Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma 2008:420747. https://doi.org/10.1155/2008/420747

    Article  Google Scholar 

  30. Toufighi K, Brady SM, Austin R et al (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43:153–163. https://doi.org/10.1111/j.1365-313X.2005.02437.x

    Article  CAS  PubMed  Google Scholar 

  31. Brady SM, Orlando DA, Lee J-Y et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806. https://doi.org/10.1126/science.1146265

    Article  CAS  PubMed  Google Scholar 

  32. Aoki Y, Okamura Y, Tadaka S et al (2016) ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol 57:e5–e5. https://doi.org/10.1093/pcp/pcv165

    Article  CAS  PubMed  Google Scholar 

  33. Obayashi T, Kinoshita K (2009) Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res Int J Rapid Publ Rep Genes Genomes 16:249–260. https://doi.org/10.1093/dnares/dsp016

    Article  CAS  Google Scholar 

  34. Dubreucq B, Berger N, Vincent E et al (2000) The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination. Plant J Cell Mol Biol 23:643–652

    Article  CAS  Google Scholar 

  35. Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628. https://doi.org/10.1007/s11103-005-0955-6

    Article  CAS  PubMed  Google Scholar 

  36. Austin RS, Hiu S, Waese J et al (2016) New BAR tools for mining expression data and exploring Cis-elements in Arabidopsis thaliana. Plant J Cell Mol Biol. https://doi.org/10.1111/tpj.13261

  37. Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359. https://doi.org/10.1093/nar/26.1.358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O’Malley RC, Huang S-SC, Song L et al (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292. https://doi.org/10.1016/j.cell.2016.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018. https://doi.org/10.1093/bioinformatics/btr064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McLeay RC, Bailey TL (2010) Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11:165. https://doi.org/10.1186/1471-2105-11-165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brady SM, Zhang L, Megraw M et al (2011) A stele-enriched gene regulatory network in the Arabidopsis root. Mol Syst Biol 7:459. https://doi.org/10.1038/msb.2010.114

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gaudinier A, Zhang L, Reece-Hoyes JS et al (2011) Enhanced Y1H assays for Arabidopsis. Nat Methods 8:1053–1055. https://doi.org/10.1038/nmeth.1750

    Article  CAS  PubMed  Google Scholar 

  44. Li B, Gaudinier A, Tang M et al (2014) Promoter-based integration in plant defense regulation. Plant Physiol 166:1803–1820. https://doi.org/10.1104/pp.114.248716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taylor-Teeples M, Lin L, de Lucas M et al (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–575. https://doi.org/10.1038/nature14099

    Article  CAS  PubMed  Google Scholar 

  46. de Lucas M, Pu L, Turco G et al (2016) Transcriptional regulation of arabidopsis polycomb repressive complex 2 coordinates cell-type proliferation and differentiation. Plant Cell 28:2616–2631. https://doi.org/10.1105/tpc.15.00744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murphy E, Vu LD, Van den Broeck L et al (2016) RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. J Exp Bot 67:4863–4875. https://doi.org/10.1093/jxb/erw281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Porco S, Larrieu A, Du Y et al (2016) Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Dev Camb Engl 143:3340–3349. https://doi.org/10.1242/dev.136283

    Article  CAS  Google Scholar 

  49. Sparks EE, Drapek C, Gaudinier A et al (2016) Establishment of expression in the SHORTROOT-SCARECROW transcriptional cascade through opposing activities of both activators and repressors. Dev Cell 39:585–596. https://doi.org/10.1016/j.devcel.2016.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thimm O, Bläsing O, Gibon Y et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J Cell Mol Biol 37:914–939

    Article  CAS  Google Scholar 

  52. Tian T, Liu Y, Yan H et al (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129. https://doi.org/10.1093/nar/gkx382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carbon S, Ireland A, Mungall CJ et al (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289. https://doi.org/10.1093/bioinformatics/btn615

    Article  CAS  PubMed  Google Scholar 

  54. Provart N, Zhu T (2003) A browser-based functional classification SuperViewer for Arabidopsis genomics. Curr Comput Mol Biol 2003:271–272

    Google Scholar 

  55. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460. https://doi.org/10.1104/pp.102.017236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baud S, Boutin J-P, Miquel M et al (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40:151–160. https://doi.org/10.1016/S0981-9428(01)01350-X

    Article  CAS  Google Scholar 

  57. Hooper CM, Castleden IR, Tanz SK et al (2017) SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45:D1064–D1074. https://doi.org/10.1093/nar/gkw1041

    Article  CAS  PubMed  Google Scholar 

  58. Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37:D960–D962. https://doi.org/10.1093/nar/gkn733

    Article  CAS  PubMed  Google Scholar 

  59. Yao Q, Ge H, Wu S et al (2014) P3DB 3.0: From plant phosphorylation sites to protein networks. Nucleic Acids Res 42:D1206–D1213. https://doi.org/10.1093/nar/gkt1135

    Article  CAS  PubMed  Google Scholar 

  60. Yao Q, Bollinger C, Gao J et al (2012) P(3)DB: an integrated database for plant protein phosphorylation. Front Plant Sci 3:206. https://doi.org/10.3389/fpls.2012.00206

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yang W, Zhang W, Wang X (2017) Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Plant Biotechnol J 15:4–14. https://doi.org/10.1111/pbi.12652

    Article  CAS  PubMed  Google Scholar 

  62. Willems P, Horne A, Parys TV et al (2019) The plant PTM viewer, a central resource for exploring plant protein modifications. Plant J 99(4):752–762. https://doi.org/10.1111/tpj.14345

    Article  CAS  PubMed  Google Scholar 

  63. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42:D358–D363. https://doi.org/10.1093/nar/gkt1115

    Article  CAS  PubMed  Google Scholar 

  64. Chatr-Aryamontri A, Oughtred R, Boucher L et al (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45:D369–D379. https://doi.org/10.1093/nar/gkw1102

    Article  CAS  PubMed  Google Scholar 

  65. Li P, Zang W, Li Y et al (2011) AtPID: the overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis. Nucleic Acids Res 39:D1130–D1133. https://doi.org/10.1093/nar/gkq959

    Article  CAS  PubMed  Google Scholar 

  66. Dong S, Lau V, Song R et al (2019) Proteome-wide, structure-based prediction of protein-protein interactions/new molecular interactions viewer. Plant Physiol 179:1893–1907. https://doi.org/10.1104/pp.18.01216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geisler-Lee J, O’Toole N, Ammar R et al (2007) A predicted interactome for Arabidopsis. Plant Physiol 145:317–329. https://doi.org/10.1104/pp.107.103465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Katari MS, Nowicki SD, Aceituno FF et al (2010) VirtualPlant: a software platform to support systems biology research. Plant Physiol 152:500–515. https://doi.org/10.1104/pp.109.147025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mostafavi S, Ray D, Warde-Farley D et al (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9:S4

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cui H, Levesque MP, Vernoux T et al (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425. https://doi.org/10.1126/science.1139531

    Article  CAS  PubMed  Google Scholar 

  71. de Lucas M, Davière J-M, Rodríguez-Falcón M et al (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484. https://doi.org/10.1038/nature06520

    Article  CAS  PubMed  Google Scholar 

  72. Dill A, Jung HS, Sun TP (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci U S A 98:14162–14167. https://doi.org/10.1073/pnas.251534098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Waese J, Fan J, Pasha A et al (2017) ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29:1806–1821. https://doi.org/10.1105/tpc.17.00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kulkarni SR, Vaneechoutte D, Van de Velde J, Vandepoele K (2018) TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. Nucleic Acids Res 46:e31. https://doi.org/10.1093/nar/gkx1279

    Article  CAS  PubMed  Google Scholar 

  75. Ramirez CL, Foley JE, Wright DA et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375. https://doi.org/10.1038/nmeth0508-374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 Genes Genomes Genet 3:1697–1705. https://doi.org/10.1534/g3.113.007104

    Article  CAS  Google Scholar 

  77. Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232. https://doi.org/10.1038/cr.2013.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693. https://doi.org/10.1038/nbt.2655

    Article  CAS  PubMed  Google Scholar 

  79. Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial MicroRNAs in Arabidopsis. Plant Cell 18:1121–1133. https://doi.org/10.1105/tpc.105.039834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J Cell Mol Biol 53:674–690. https://doi.org/10.1111/j.1365-313X.2007.03328.x

    Article  CAS  Google Scholar 

  81. O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J Cell Mol Biol 61:928–940. https://doi.org/10.1111/j.1365-313X.2010.04119.x

    Article  CAS  Google Scholar 

  82. O’Malley RC, Barragan CC, Ecker JR (2015) A user’s guide to the Arabidopsis T-DNA insertion mutant collections. Methods Mol Biol Clifton NJ 1284:323–342. https://doi.org/10.1007/978-1-4939-2444-8_16

    Article  CAS  Google Scholar 

  83. IAIC (2012) Taking the next step: building an Arabidopsis information portal. Plant Cell Online 24:2248–2256. https://doi.org/10.1105/tpc.112.100669

    Article  CAS  Google Scholar 

  84. Mi H, Dong Q, Muruganujan A et al (2010) PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res 38:D204–D210. https://doi.org/10.1093/nar/gkp1019

    Article  CAS  PubMed  Google Scholar 

  85. Lee I, Ambaru B, Thakkar P et al (2010) Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol 28:149–156. https://doi.org/10.1038/nbt.1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kakei Y, Shimada Y (2015) AtCAST3.0 update: a web-based tool for analysis of transcriptome data by searching similarities in gene expression profiles. Plant Cell Physiol 56:e7. https://doi.org/10.1093/pcp/pcu174

    Article  CAS  PubMed  Google Scholar 

  87. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220. https://doi.org/10.1093/nar/gkq537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Mol Plant 7:923–926. https://doi.org/10.1093/mp/ssu009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Provart .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

ABI3 developmentally coexpressed genes (DOCX 28 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alex Mason, G., Cantó-Pastor, A., Brady, S.M., Provart, N.J. (2021). Bioinformatic Tools in Arabidopsis Research. In: Sanchez-Serrano, J.J., Salinas, J. (eds) Arabidopsis Protocols . Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0880-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0879-1

  • Online ISBN: 978-1-0716-0880-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics