Skip to main content

Using Genetically Encoded Fluorescent Biosensors for Quantitative In Vivo Imaging

  • Protocol
  • First Online:
Arabidopsis Protocols

Abstract

Fluorescent biosensors are powerful tools for tracking analytes or cellular processes in live organisms and allowing visualization of the spatial and temporal dynamics of cellular regulators. Fluorescent protein (FP)-based biosensors are extensively employed due to their high selectivity and low invasiveness. A variety of FP-based biosensors have been engineered and applied in plant research to visualize dynamic changes in pH, redox state, concentration of molecules (ions, sugars, peptides, ATP, reactive oxygen species, and phytohormones), and activity of transporters. In this chapter, we briefly summarize reported uses of FP-based biosensors in planta and show simple methods to monitor the dynamics of intracellular Ca2+ in Arabidopsis thaliana using a ratiometric genetically encoded Ca2+ indicator, MatryoshCaMP6s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein (Bioluminescence; Cnidaria; aequorin; energy transfer; chromophore; cloning). Biochem Mol Biol Mayo Found 111:284–2065

    Google Scholar 

  2. Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11990–11995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  PubMed  Google Scholar 

  4. Ulmasov T, Murfett J, Hagen G, Guilfoyle T (1997) Creation of a highly active synthetic AuxRE. Plant Cell 9:1963–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH et al (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106

    Article  CAS  PubMed  Google Scholar 

  6. Silverstone AL (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1566

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Silverstone AL, Tseng T-S, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun T-P (2006) Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Plant Physiol 143:987–1000

    Article  PubMed  CAS  Google Scholar 

  8. Larrieu A, Champion A, Legrand J, Lavenus J, Mast D, Brunoud G et al (2015) A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat Commun 6:6043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Samodelov SL, Beyer HM, Guo X, Augustin M, Jia KP, Baz L et al (2016) Strigoquant: a genetically encoded biosensor for quantifying Strigolactone activity and specificity. Sci Adv 2:e1601266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H et al (2011) Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23:3547–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka M, Sotta N, Yamazumi Y, Yamashita Y, Miwa K, Murota K et al (2016) The minimum open Reading frame, AUG-stop, induces boron-dependent ribosome stalling and mRNA degradation. Plant Cell 28:2830–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fukuda M, Wakuta S, Kamiyo J, Fujiwara T, Takano J (2018) Establishment of genetically encoded biosensors for cytosolic boric acid in plant cells. Plant J 95:763–774

    Article  CAS  Google Scholar 

  13. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  14. Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–747

    Article  CAS  PubMed  Google Scholar 

  15. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY et al (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    Article  CAS  PubMed  Google Scholar 

  16. Mukherjee P, Banerjee S, Wheeler A, Ratliff LA, Irigoyen S, Garcia LR et al (2015) Live imaging of inorganic phosphate in plants with cellular and subcellular resolution. Plant Physiol 167:628–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels A, Hughes S et al (2014) Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+. ACS Chem Biol 9:2111–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB (2014) Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. New Phytol 202:198–208

    Article  CAS  PubMed  Google Scholar 

  19. Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133

    Article  CAS  PubMed  Google Scholar 

  20. Lager I, Looger LL, Hilpert M, Lalonde S, Frommer WB (2006) Conversion of a putative agrobacterium sugar-binding protein into a FRET sensor with high selectivity for sucrose. J Biol Chem 281:30875–30883

    Article  CAS  PubMed  Google Scholar 

  21. Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR et al (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  PubMed  Google Scholar 

  23. Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 102:8740–8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Imamura H, Huynh KP, Togawa H, Saito K, Iino R, Kato-yamada Y (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based. Proc Natl Acad Sci U S A 106:15651–15656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hatsugai N, Perez Koldenkova V, Imamura H, Noji H, Nagai T (2012) Changes in cytosolic ATP levels and intracellular morphology during bacteria-induced hypersensitive cell death as revealed by real-time fluorescence microscopy imaging. Plant Cell Physiol 53:1768–1775

    Article  CAS  PubMed  Google Scholar 

  27. De Col V, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A et al (2017) ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. elife 6:e26770

    Article  PubMed  PubMed Central  Google Scholar 

  28. Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI (2014) FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. elife 3:e01739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jones AM, JAH D, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB (2014) Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. elife 3:e01741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM (2017) In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants 3:803–813

    Article  CAS  PubMed  Google Scholar 

  31. Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS (2000) Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275:6047–6050

    Article  CAS  PubMed  Google Scholar 

  33. Shen J, Zeng Y, Zhuang X, Sun L, Yao X, Pimpl P, Jiang L (2013) Organelle pH in the Arabidopsis endomembrane system. Mol Plant 6:1419–1437

    Article  CAS  PubMed  Google Scholar 

  34. Martiniere A, Bassil E, Jublanc E, Alcon C, Reguera M, Sentenac H et al (2013) In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. Plant Cell 25:4028–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang H, Pu X, Wang L, Liu L, Theg SM (2017) A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants. Biochem Biophys Res Commun 486:1–5

    Article  CAS  PubMed  Google Scholar 

  36. Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gjetting KSK, Ytting CK, Schulz A, Fuglsang AT (2012) Live imaging of intra-and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J Exp Bot 63:3207–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

  39. Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  40. Schwarzländer M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta Bioenerg 1787:468–475

    Article  CAS  Google Scholar 

  41. Bratt A, Rosenwasser S, Meyer A, Fluhr R (2016) Organelle redox autonomy during environmental stress. Plant Cell Environ 39:1909–1919

    Article  CAS  PubMed  Google Scholar 

  42. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96:11241–11246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  44. Defalco TA, Toyota M, Phan V, Karia P, Moeder W, Gilroy S, Yoshioka K (2017) Using GCaMP3 to study Ca2+ signaling in Nicotiana species. Plant Cell Physiol 58:1173–1184

    Article  CAS  PubMed  Google Scholar 

  45. Kleist TJ, Cartwright HN, Perera AM, Christianson ML, Lemaux PG, Luan S (2017) Genetically encoded calcium indicators for fluorescence imaging in the moss Physcomitrella: GCaMP3 provides a bright new look. Plant Biotechnol J 15:1235–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vincent TR, Canham J, Toyota M, Avramova M, Mugford ST, Gilroy S et al (2017) Real-time in vivo recording of Arabidopsis calcium signals during insect feeding using a fluorescent biosensor. J Vis Exp (126):56142

    Google Scholar 

  47. Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ et al (2018) Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361:1112–1115

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE (2018) Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci U S A 115:10178–10183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kalko EKV, Dukas R, Ratcliffe JM, Teeling EC, Haven N, Fattu JM et al (2011) An expanded palette of genetically. Science 557:1888–1891

    Google Scholar 

  50. Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G, Schumacher K, Krebs M (2015) Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca2+]cyt patterns in Arabidopsis. Mol Plant 8:1188–1200

    Article  CAS  PubMed  Google Scholar 

  51. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286

    Article  CAS  PubMed  Google Scholar 

  52. Markvicheva KN, Bilan DS, Mishina NM, Gorokhovatsky AY, Vinokurov LM, Lukyanov S, Belousov VV (2011) A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg Med Chem 19:1079–1084

    Article  CAS  PubMed  Google Scholar 

  53. Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI et al (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant J 62:760–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hernández-Barrera A, Velarde-Buendía A, Zepeda I, Sanchez F, Quinto C, Sánchez-Lopez R et al (2015) Hyper, a hydrogen peroxide sensor, indicates the sensitivity of the Arabidopsis root elongation zone to aluminum treatment. Sensors 15:855–867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:1–10

    Article  CAS  Google Scholar 

  56. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J et al (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500:422–426

    Article  CAS  PubMed  Google Scholar 

  58. Pérez Koldenkova V, Nagai T (2013) Genetically encoded Ca2+ indicators: properties and evaluation. Biochim Biophys Acta 1833:1787–1797

    Article  PubMed  CAS  Google Scholar 

  59. Waadt R, Krebs M, Kudla J, Schumacher K (2017) Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis. New Phytol 216:303–320

    Article  CAS  PubMed  Google Scholar 

  60. Ast C, Foret J, Oltrogge LM, De Michele R, Kleist TJ, Ho C-H, Frommer WB (2017) Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins. Nat Commun 8:431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. De Michele R, Ast C, Loqué D, Ho C-H, LA Andrade S, Lanquar V et al (2013) Fluorescent sensors reporting the activity of ammonium transceptors in live cells. elife 2:1–22

    Article  CAS  Google Scholar 

  62. Chaudhuri B, Hörmann F, Frommer WB (2011) Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J Exp Bot 62:2411–2417

    Article  CAS  PubMed  Google Scholar 

  63. Ho C-H, Frommer WB (2014) Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters. elife 3:1–21

    Article  Google Scholar 

  64. Benfey PN, Chua N-H (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  65. Grefen C, Chen Z, Honsbein A, Donald N, Hills A, Blatt MR (2010) A novel motif essential for SNARE interaction with the K + channel KC1 and channel gating in Arabidopsis. Plant Cell 22:3076–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deuschle K (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta Biomembr 1778:1091–1099

    Article  CAS  Google Scholar 

  68. Grossmann G, Guo W-J, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M (2011) The RootChip: an integrated microfluidic Chip for plant science. Plant Cell 23:4234–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grossmann G, Meier M, Cartwright HN, Sosso D, Quake SR, Ehrhardt DW, Frommer WB (2012) Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J Vis Exp 1:1–7

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Koji Matsushita (Nagoya University) for designing the perfusion chamber holder. This research was supported by the Human Frontier Science Program to M.N., JSPS Grant-in-Aid for Young Scientists (19K16164) to A.Y., and JSPS KAKENHI Grant (18KK0195) to M.N. and A.Y., and ITbM is supported by World Premier International Research Center Initiative (WPI), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yoshinari, A. et al. (2021). Using Genetically Encoded Fluorescent Biosensors for Quantitative In Vivo Imaging. In: Sanchez-Serrano, J.J., Salinas, J. (eds) Arabidopsis Protocols . Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0880-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0879-1

  • Online ISBN: 978-1-0716-0880-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics