Skip to main content

Molecular Characterization of Testicular Germ Cell Tumors Using Tissue Microdissection

  • Protocol
  • First Online:
Testicular Germ Cell Tumors

Abstract

Testicular germ cell tumors are among the most common malignancies seen in children and young adults. Genomic studies have identified characteristic molecular profiles in testicular cancer, which are associated with histologic subtypes and may predict clinical behavior including treatment responses. Emerging molecular technologies analyzing tumor genomics, transcriptomics, and proteomics may now guide precision management of testicular tumors. Laser-assisted microdissection methods such as laser capture microdissection efficiently isolate selected tumor cells from routine pathology specimens, avoiding contamination from nontarget cell populations. Laser capture microdissection in combination with next generation sequencing makes precise high throughput genetic evaluation effective and efficient. The use of laser capture microdissection (LCM) for molecular testing may translate into great benefits for the clinical management of patients with testicular cancers. This review discusses application protocols for laser-assisted microdissection to investigate testicular germ cell tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng L, Lopez-Beltran A, Massari F, MacLennan GT, Montironi R (2018) Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol 31:24–38

    Article  CAS  PubMed  Google Scholar 

  2. Cheng L, Alexander RE, Maclennan GT et al (2012) Molecular pathology of lung cancer: key to personalized medicine. Mod Pathol 25:347–369

    Article  CAS  PubMed  Google Scholar 

  3. Cheng L, Zhang DY, Eble JN (2013) Molecular genetic pathology, 2nd edn. Springer, New York

    Book  Google Scholar 

  4. Cheng L, Eble JN (2013) Molecular surgical pathology. Springer, New York

    Book  Google Scholar 

  5. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  6. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  7. Ledford H (2015) End of cancer-genome project prompts rethink. Nature 517:128–129

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Lichtenberg T, Hoadley KA et al (2018) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173:400.e11–416.e11

    Article  CAS  Google Scholar 

  9. Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1:586–603

    Article  CAS  PubMed  Google Scholar 

  10. Gallagher RI, Blakely SR, Liotta LA, Espina V (2012) Laser capture microdissection: Arcturus(XT) infrared capture and UV cutting methods. Methods Mol Biol 823:157–178

    Article  CAS  PubMed  Google Scholar 

  11. Golubeva Y, Salcedo R, Mueller C, Liotta LA, Espina V (2013) Laser capture microdissection for protein and NanoString RNA analysis. Methods Mol Biol 931:213–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng L, Zhang S, MacLennan GT et al (2013) Laser-assisted microdissection in translational research: theory, technical considerations, and future applications. Appl Immunohistochem Mol Morphol 21:31–47

    Article  PubMed  Google Scholar 

  13. McClure CD, Southall TD (2015) Getting down to specifics: profiling gene expression and protein-DNA interactions in a cell type-specific manner. Adv Genet 91:103–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jan SZ, Vormer TL, Jongejan A et al (2017) Unraveling transcriptome dynamics in human spermatogenesis. Development 144:3659–3673

    PubMed  PubMed Central  Google Scholar 

  15. Sluka P, O’Donnell L, McLachlan RI, Stanton PG (2008) Application of laser-capture microdissection to analysis of gene expression in the testis. Prog Histochem Cytochem 42:173–201

    Article  CAS  PubMed  Google Scholar 

  16. Cheng L, Albers P, Berney DM et al (2018) Testicular cancer. Nat Rev Dis Primers 4:29

    Article  PubMed  Google Scholar 

  17. Cheng L, Lyu B, Roth LM (2017) Perspectives on testicular germ cell neoplasms. Hum Pathol 59:10–25

    Article  CAS  PubMed  Google Scholar 

  18. Ivell R, Spiess A (2002) Analysing differential gene expression in the testis. Springer-Verlag, Berlin

    Book  Google Scholar 

  19. Rajpert-De Meyts E, McGlynn KA, Okamoto K, Jewett MA, Bokemeyer C (2016) Testicular germ cell tumours. Lancet 387:1762–1774

    Article  PubMed  Google Scholar 

  20. Yachida S, Jones S, Bozic I et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Logothetis CJ (2013) Re: intratumor heterogeneity and branched evolution revealed by multiregion sequencing. Eur Urol 64:170

    Article  CAS  PubMed  Google Scholar 

  23. Swanton C, Caldas C (2009) Molecular classification of solid tumours: towards pathway-driven therapeutics. Br J Cancer 100:1517–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell RT, Camacho-Moll M, Macdonald J et al (2014) Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential. Mod Pathol 27:1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kristensen DG, Nielsen JE, Jorgensen A et al (2014) Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis. Br J Cancer 110:668–678

    Article  CAS  PubMed  Google Scholar 

  26. Taylor-Weiner A, Zack T, O’Donnell E et al (2016) Genomic evolution and chemoresistance in germ-cell tumours. Nature 540:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Necchi A, Bratslavsky G, Corona RJ et al (2020) Genomic characterization of testicular germ cell tumors relapsing after chemotherapy. Eur Urol Focus 6(1):122–130

    Article  PubMed  Google Scholar 

  28. Dorssers LCJ, Gillis AJM, Stoop H et al (2019) Molecular heterogeneity and early metastatic clone selection in testicular germ cell cancer development. Br J Cancer 120(4):444–452

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shen H, Shih J, Hollern DP et al (2018) Integrated molecular characterization of testicular germ cell tumors. Cell Rep 23:3392–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. da Silva VL, Fonseca AF, Fonseca M et al (2017) Genome-wide identification of cancer/testis genes and their association with prognosis in a pan-cancer analysis. Oncotarget 8:92966–92977

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kernek KM, Ulbright TM, Zhang S et al (2003) Identical allelic losses in mature teratoma and other histologic components of malignant mixed germ cell tumors of the testis. Am J Pathol 163:2477–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anglesio MS, Papadopoulos N, Ayhan A et al (2017) Cancer-associated mutations in endometriosis without cancer. N Engl J Med 376:1835–1848

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheng L, Gu J, Ulbright TM et al (2002) Precise microdissection of human bladder carcinomas reveals divergent tumor subclones in the same tumor. Cancer 94:104–110

    Article  PubMed  Google Scholar 

  34. Wang X, Wang M, MacLennan GT et al (2009) Evidence for common clonal origin of multifocal lung cancers. J Natl Cancer Inst 101:560–570

    Article  CAS  PubMed  Google Scholar 

  35. McCarthy RP, Wang M, Jones TD, Strate RW, Cheng L (2006) Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas. Clin Cancer Res 12:2414–2418

    Article  CAS  PubMed  Google Scholar 

  36. Katona TM, Jones TD, Wang M et al (2006) Molecular evidence for independent origin of multifocal neuroendocrine tumors of the enteropancreatic axis. Cancer Res 66:4936–4942

    Article  CAS  PubMed  Google Scholar 

  37. Jones TD, Wang M, Sung MT et al (2006) Clonal origin of metastatic testicular teratomas. Clin Cancer Res 12:5377–5383

    Article  CAS  PubMed  Google Scholar 

  38. Cheng L, Jones TD, McCarthy RP et al (2005) Molecular genetic evidence for a common clonal origin of urinary bladder small cell carcinoma and coexisting urothelial carcinoma. Am J Pathol 166:1533–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sung MT, Wang M, MacLennan GT et al (2007) Histogenesis of sarcomatoid urothelial carcinoma of the urinary bladder: evidence for a common clonal origin with divergent differentiation. J Pathol 211:420–430

    Article  PubMed  Google Scholar 

  40. Jones TD, Wang M, Eble JN et al (2005) Molecular evidence supporting field effect in urothelial carcinogenesis. Clin Cancer Res 11:6512–6519

    Article  CAS  PubMed  Google Scholar 

  41. Jones TD, Eble JN, Wang M et al (2005) Molecular genetic evidence for the independent origin of multifocal papillary tumors in patients with papillary renal cell carcinomas. Clin Cancer Res 11:7226–7233

    Article  CAS  PubMed  Google Scholar 

  42. Abbosh PH, Wang M, Eble JN et al (2008) Hypermethylation of tumor-suppressor gene CpG islands in small-cell carcinoma of the urinary bladder. Mod Pathol 21:355–362

    Article  CAS  PubMed  Google Scholar 

  43. Cheng L, Zhang S, Wang M et al (2007) Molecular genetic evidence supporting the neoplastic nature of stromal cells in ‘fibrosis’ after chemotherapy for testicular germ cell tumours. J Pathol 213:65–71

    Article  CAS  PubMed  Google Scholar 

  44. Cheng L, MacLennan GT, Zhang S et al (2004) Laser capture microdissection analysis reveals frequent allelic losses in papillary urothelial neoplasm of low malignant potential of the urinary bladder. Cancer 101:183–188

    Article  PubMed  Google Scholar 

  45. Kum JB, Ulbright TM, Williamson SR et al (2012) Molecular genetic evidence supporting the origin of somatic-type malignancy and teratoma from the same progenitor cell. Am J Surg Pathol 36:1849–1856

    Article  PubMed  Google Scholar 

  46. Cheng L, Zhang S, Eble JN et al (2012) Molecular genetic evidence supporting the neoplastic nature of fibrous stroma in testicular teratoma. Mod Pathol 25:1432–1438

    Article  CAS  PubMed  Google Scholar 

  47. Cheng L, MacLennan GT, Zhang S et al (2008) Evidence for polyclonal origin of multifocal clear cell renal cell carcinoma. Clin Cancer Res 14:8087–8093

    Article  CAS  PubMed  Google Scholar 

  48. Scicchitano MS, Dalmas DA, Boyce RW, Thomas HC, Frazier KS (2009) Protein extraction of formalin-fixed, paraffin-embedded tissue enables robust proteomic profiles by mass spectrometry. J Histochem Cytochem 57:849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K (2012) Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol 16:400–405

    Article  PubMed  PubMed Central  Google Scholar 

  50. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161:1961–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang H, Owens JD, Shih JH et al (2006) Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA. BMC Genomics 7:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Xie R, Chung JY, Ylaya K et al (2011) Factors influencing the degradation of archival formalin-fixed paraffin-embedded tissue sections. J Histochem Cytochem 59:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  54. Shen C, Beroukhim R, Schumacher SE et al (2011) Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov 1:222–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Espina V, Heiby M, Pierobon M, Liotta LA (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7:647–657

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Slovak Research and Development Agency under contract No. APVV-15-0086 and Scientific Grant Agency under contract number VEGA 1/0043/18 for Michal Chovanec.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cheng, L. et al. (2021). Molecular Characterization of Testicular Germ Cell Tumors Using Tissue Microdissection. In: Bagrodia, A., Amatruda, J.F. (eds) Testicular Germ Cell Tumors. Methods in Molecular Biology, vol 2195. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0860-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0860-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0859-3

  • Online ISBN: 978-1-0716-0860-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics